Calcium-activated K+ channels: metabolic regulation. 1991

L Toro, and E Stefani
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030.

Calcium-activated potassium (KCa) channels are highly modulated by a large spectrum of metabolites. Neurotransmitters, hormones, lipids, and nucleotides are capable of activating and/or inhibiting KCa channels. Studies from the last few years have shown that metabolites modulate the activity of KCa channels via: (1) a change in the affinity of the channel for Ca2+ (K 1/2 is modified), (2) a parallel shift in the voltage axis of the activation curves, or (3) a change in the slope (effective valence) of the voltage dependence curve. The shift of the voltage dependence curve can be a direct consequence of the change in the affinity for Ca2+. Recently, the mechanistic steps involved in the modulation of KCa channels are being uncovered. Some interactions may be direct on KCa channels and others may be mediated via G-proteins, second messengers, or phosphorylation. The information given in this review highlights the possibility that KCa channels can be activated or inhibited by metabolites without a change in the intracellular Ca2+ concentration.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

L Toro, and E Stefani
August 1991, Journal of bioenergetics and biomembranes,
L Toro, and E Stefani
October 2004, The Journal of general physiology,
L Toro, and E Stefani
January 2021, Handbook of experimental pharmacology,
L Toro, and E Stefani
April 2011, American journal of physiology. Cell physiology,
L Toro, and E Stefani
August 1993, Cardiovascular drugs and therapy,
L Toro, and E Stefani
August 1993, Cardiovascular drugs and therapy,
L Toro, and E Stefani
January 1996, Society of General Physiologists series,
L Toro, and E Stefani
March 2001, The Journal of general physiology,
Copied contents to your clipboard!