Developmental regulation of asparagine-linked oligosaccharide synthesis in Dictyostelium discoideum. 1991

D J Sharkey, and R Kornfeld
Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110.

In the preceding report we demonstrated that the expression of two developmentally regulated alpha-mannosidase activities is induced in Dictyostelium discoideum during its differentiation from single-cell amoebae to multicellular organism (Sharkey, D. J., and Kornfeld, R. (1991) J. Biol. Chem. 266, 18477-18484). These activities, designated membrane alpha-mannosidase I (MI) and membrane alpha-mannosidase II (MII), were shown to have several properties in common with rat liver Golgi alpha-mannosidases I and II, respectively, suggesting that MI and MII may play a role in the processing of asparagine-linked oligosaccharides in developing D. discoideum. In this study we analyzed the structures of the asparagine-linked oligosaccharides synthesized by D. discoideum at various stages of development to determine the timing and extent of asparagine-linked oligosaccharide processing. Cells were labeled with [2-3H] mannose, and then total cellular glycoproteins were digested with Pronase to generate glycopeptides that were fractionated on concanavalin A-Sepharose. Glycopeptides from each fraction were digested with endoglycosidase H, both before and after desulfation by solvolysis, and the released, neutral oligosaccharides were sized by high pressure liquid chromatography. At early stages of development, D. discoideum contain predominantly large high mannose-type oligosaccharides (Man9GlcNAc and Man8GlcNAc). Some of these are modified by GlcNAc residues attached beta 1-4 to the mannose-linked alpha 1-6 to the beta-linked core mannose (the "intersecting" position), as well as by fucose, sulfate, and phosphate. In contrast, the oligosaccharides found at late stages of development (18-24 h) have an array of sizes from Man9GlcNAc to Man3GlcNAc. These are still modified by GlcNAc, fucose, sulfate, and phosphate, but the percent of larger high mannose oligosaccharides that are modified with GlcNAc in the intersecting position decreases after 6 h of development, in parallel with the decrease in the intersecting GlcNAc transferase activity. Similarly, the changes in the size of asparagine-linked oligosaccharides synthesized during development correlate well with the appearance of MI and MII activities and suggest that these developmentally regulated alpha-mannosidase activities function in the processing of these oligosaccharides. This is supported further by the observation that oligosaccharide processing was inhibited in late stage cells labeled in the presence of either deoxymannojirimycin, an inhibitor of MI, or swainsonine, an inhibitor of MII.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008361 Mannosidases Glycoside hydrolases that catalyze the hydrolysis of alpha or beta linked MANNOSE. Mannosidase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D002847 Chromatography, Agarose A method of gel filtration chromatography using agarose, the non-ionic component of agar, for the separation of compounds with molecular weights up to several million. Chromatography, Sepharose,Agarose Chromatography,Sepharose Chromatography,Agarose Chromatographies,Chromatographies, Agarose,Chromatographies, Sepharose,Sepharose Chromatographies
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine

Related Publications

D J Sharkey, and R Kornfeld
August 1991, Biochemical Society transactions,
D J Sharkey, and R Kornfeld
August 1970, Journal of bacteriology,
D J Sharkey, and R Kornfeld
October 1969, Journal of bacteriology,
D J Sharkey, and R Kornfeld
November 1983, The Journal of cell biology,
D J Sharkey, and R Kornfeld
November 1988, Archives of biochemistry and biophysics,
D J Sharkey, and R Kornfeld
April 1990, Molecular microbiology,
D J Sharkey, and R Kornfeld
January 1986, Developmental biology,
Copied contents to your clipboard!