An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. 1991

N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46285.

A new tetrazolium salt XTT, sodium 3'-[1-[(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6- nitro)benzene-sulfonic acid hydrate, was evaluated for use in a colorimetric assay for cell viability and proliferation by normal activated T cells and several cytokine dependent cell lines. Cleavage of XTT by dehydrogenase enzymes of metabolically active cells yields a highly colored formazan product which is water soluble. This feature obviates the need for formazan crystal solubilization prior to absorbance measurements, as required when using other tetrazolium salts such as MTT. Bioreduction of XTT by all the murine cells examined was not particularly efficient, but could be potentiated by addition of electron coupling agents such as phenazine methosulfate (PMS) or menadione (MEN). Optimal concentrations of PMS or MEN were determined for the metabolism of XTT by the T cell lines HT-2 and 11.6, NFS-60 a myeloid leukemia, MC/9 a mast cell line and mitogen activated splenic T cells. When used in combination with PMS, each of these cells generated higher formazan absorbance values with XTT than were observed with MTT. Thus the use of XTT in colorimetric proliferation assays offer significant advantages over MTT, resulting from reduced assay time and sample handling, while offering equivalent sensitivity.

UI MeSH Term Description Entries
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D008773 Methylphenazonium Methosulfate Used as an electron carrier in place of the flavine enzyme of Warburg in the hexosemonophosphate system and also in the preparation of SUCCINIC DEHYDROGENASE. Phenazine Methosulfate,5-Methylphenazinium Methyl Sulfate,5 Methylphenazinium Methyl Sulfate,Methosulfate, Methylphenazonium,Methosulfate, Phenazine,Methyl Sulfate, 5-Methylphenazinium,Sulfate, 5-Methylphenazinium Methyl
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003124 Colorimetry Any technique by which an unknown color is evaluated in terms of standard colors. The technique may be visual, photoelectric, or indirect by means of spectrophotometry. It is used in chemistry and physics. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue

Related Publications

N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
June 2017, Parasites & vectors,
N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
November 1985, The Journal of infectious diseases,
N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
July 1966, Clinical chemistry,
N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
May 1990, Nihon Shokakibyo Gakkai zasshi = The Japanese journal of gastro-enterology,
N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
January 1992, Archives of medical research,
N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
April 1997, Journal of molecular and cellular cardiology,
N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
January 2011, Methods in molecular biology (Clifton, N.J.),
N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
October 2002, Wei sheng yan jiu = Journal of hygiene research,
N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
September 2008, Journal of microbiological methods,
N W Roehm, and G H Rodgers, and S M Hatfield, and A L Glasebrook
May 1966, American journal of clinical pathology,
Copied contents to your clipboard!