IL-4 increases CD21-dependent infection of pulmonary alveolar epithelial type II cells by EBV. 2009

Andrea P Malizia, and Jim J Egan, and Peter P Doran
Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street, Dublin, 7, Ireland.

EBV infection has been implicated in the pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). Viral infection may occur from the early or late stage in IPF development. Whether alveolar epithelial cells, AECs, normally express EBV main receptor, CD21, remains uncertain. Such situations prompted us to exploit an efficient direct infection system to investigate EBV receptor repertoire in primary human AECs. Using human primary type 2 AECs, which have been grown in basal medium supplemented with 10 ng/ml Keratinocyte Growth Factor, and type 1 AECs, supplemented with Epithelial Growth Factor, both AEC lines express CD21 mRNA and protein with a significant increase in type 2 cells. Type 2 AECs have been exposed to TGFbeta1 and IL-4, whose expression is associated with IPF development. CD21 is highly expressed in type 2 AECs following IL-4 exposure. EBV bound to type 2 AECs membrane increases significantly following pre-treatment with IL-4 (p<0.001) and decreasing antagonizing CD21 receptor (p<0.01). 200 microg/ml G418-mediated selection of EBV-Neomycin resistant infected cells selected IL-4 pre-exposed type 2 AECs. Our study of a viral cell line model provides evidence to suggest that CD21-dependent viral entry plays a crucial role in type 2 AECs, indicative of an IL-4 response EBV infection in IPF.

UI MeSH Term Description Entries
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015847 Interleukin-4 A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells. B-Cell Growth Factor-I,B-Cell Stimulatory Factor-1,Binetrakin,IL-4,Mast Cell Growth Factor-2,B Cell Stimulatory Factor-1,B-Cell Growth Factor-1,B-Cell Proliferating Factor,B-Cell Stimulating Factor-1,B-Cell Stimulatory Factor 1,BCGF-1,BSF-1,IL4,MCGF-2,B Cell Growth Factor 1,B Cell Growth Factor I,B Cell Proliferating Factor,B Cell Stimulating Factor 1,B Cell Stimulatory Factor 1,Interleukin 4,Mast Cell Growth Factor 2
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017464 Receptors, Complement 3d Molecular sites on or in B-lymphocytes, follicular dendritic cells, lymphoid cells, and epithelial cells that recognize and combine with COMPLEMENT C3D. Human complement receptor 2 (CR2) serves as a receptor for both C3dg and the gp350/220 glycoprotein of HERPESVIRUS 4, HUMAN, and binds the monoclonal antibody OKB7, which blocks binding of both ligands to the receptor. Antigens, CD21,C3d Receptors,CD21 Antigens,CR2 Receptors,Complement 3d Receptors,Complement Receptors 2,Epstein-Barr Virus Receptors,Receptors, C3d,Receptors, CR2,CD 21 Antigens,CD21 Antigen,Complement 3d Receptor,Complement Receptor 2,Epstein-Barr Virus Receptor,Herpesvirus 4 Receptors, Human,Receptors, Epstein-Barr Virus,Antigen, CD21,Antigens, CD 21,Epstein Barr Virus Receptor,Epstein Barr Virus Receptors,Receptor 2, Complement,Receptor, Complement 3d,Receptor, Epstein-Barr Virus,Receptors 2, Complement,Receptors, Epstein Barr Virus,Virus Receptor, Epstein-Barr,Virus Receptors, Epstein-Barr
D053585 Virus Attachment The binding of VIRUS PARTICLES to VIRUS RECEPTORS on the host cell surface, facilitating VIRUS ENTRY into the cell. Viral Attachment,Viral Binding,Virus Binding,Attachment, Viral,Attachment, Virus,Binding, Viral,Binding, Virus
D054990 Idiopathic Pulmonary Fibrosis A common interstitial lung disease of unknown etiology, usually occurring between 50-70 years of age. Clinically, it is characterized by an insidious onset of breathlessness with exertion and a nonproductive cough, leading to progressive DYSPNEA. Pathological features show scant interstitial inflammation, patchy collagen fibrosis, prominent fibroblast proliferation foci, and microscopic honeycomb change. Cryptogenic Fibrosing Alveolitis,Familial Idiopathic Pulmonary Fibrosis,Fibrocystic Pulmonary Dysplasia,Fibrosing Alveolitis, Cryptogenic,Idiopathic Fibrosing Alveolitis, Chronic Form,Idiopathic Pulmonary Fibrosis, Familial,Interstitial Pneumonitis, Usual,Pulmonary Fibrosis, Idiopathic,Usual Interstitial Pneumonia,Cryptogenic Fibrosing Alveolitides,Dysplasia, Fibrocystic Pulmonary,Fibrocystic Pulmonary Dysplasias,Fibrosing Alveolitides, Cryptogenic,Idiopathic Pulmonary Fibroses,Interstitial Pneumonia, Usual,Pneumonitides, Usual Interstitial,Pneumonitis, Usual Interstitial,Pulmonary Dysplasia, Fibrocystic,Pulmonary Fibroses, Idiopathic,Usual Interstitial Pneumonias,Usual Interstitial Pneumonitides,Usual Interstitial Pneumonitis

Related Publications

Andrea P Malizia, and Jim J Egan, and Peter P Doran
October 2020, Experimental and therapeutic medicine,
Andrea P Malizia, and Jim J Egan, and Peter P Doran
March 1988, New Zealand veterinary journal,
Andrea P Malizia, and Jim J Egan, and Peter P Doran
December 2001, Antioxidants & redox signaling,
Andrea P Malizia, and Jim J Egan, and Peter P Doran
March 1979, Biochimica et biophysica acta,
Andrea P Malizia, and Jim J Egan, and Peter P Doran
February 2010, American journal of respiratory and critical care medicine,
Andrea P Malizia, and Jim J Egan, and Peter P Doran
January 2009, PloS one,
Andrea P Malizia, and Jim J Egan, and Peter P Doran
November 1985, The Western journal of medicine,
Andrea P Malizia, and Jim J Egan, and Peter P Doran
January 1980, Birth defects original article series,
Andrea P Malizia, and Jim J Egan, and Peter P Doran
March 2013, Biochemical and biophysical research communications,
Andrea P Malizia, and Jim J Egan, and Peter P Doran
January 1993, Experimental lung research,
Copied contents to your clipboard!