Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in explants of rat adipose tissue. 1991

J Oben, and L Morgan, and J Fletcher, and V Marks
School of Biological Sciences, University of Surrey, Guildford.

The effect of gastric inhibitory polypeptide (GIP), glucagon-like peptide-1(7-36) amide, (GLP-1(7-36) amide), glucagon-like peptide-2 (GLP-2), glucagon and insulin on fatty acid synthesis in explants of rat adipose tissue from various sites was investigated. GIP, GLP-1(7-36) amide and insulin stimulated fatty acid synthesis, as determined by measuring the incorporation of [14C]acetate into saponifiable fat, in a dose-dependent manner, over the concentration range 5-15 ng/ml (0.87-2.61 nmol/l) for insulin and 0.5-7.5 ng/ml for GIP (0.10-1.50 nmol/l) and GLP-1(7-36) amide (0.15-2.27 nmol/l). Insulin and GIP caused a significantly greater stimulation of [14C]acetate incorporation into fatty acids in omental adipose tissue than in either epididymal or subcutaneous adipose tissue. Both GIP and GLP-1(7-36) amide had the ability to stimulate fatty acid synthesis within the physiological range of the circulating hormones. At lower concentrations of the hormones, GLP-1(7-36) amide was a more potent stimulator of fatty acid synthesis than GIP in omental adipose tissue culture; the basal rate of fatty acid synthesis was 0.41 +/- 0.03 pmol acetate incorporated/mg wet weight tissue per 2 h; at 0.10 nmol hormone/1 1.15 +/- 0.10 and 3.40 +/- 0.12 pmol acetate incorporated/mg wet weight tissue per 2 h for GIP and GLP-1(7-36) amide respectively (P less than 0.01). GLP-2 and glucagon were without effect on fatty acid synthesis in omental adipose tissue. The study indicates that GIP and GLP-1(7-36)amide, in addition to stimulating insulin secretion, may play a direct physiological role in vivo, in common with insulin, in promoting fatty acid synthesis in adipose tissue.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D004763 Glucagon-Like Peptides Peptides derived from proglucagon which is also the precursor of pancreatic GLUCAGON. Despite expression of proglucagon in multiple tissues, the major production site of glucagon-like peptides (GLPs) is the INTESTINAL L CELLS. GLPs include glucagon-like peptide 1, glucagon-like peptide 2, and the various truncated forms. Enteroglucagon,Enteroglucagons,Glucagon-Like Peptide,Glucagon-Like Polypeptide,Gut Glucagon,Glucagon-Like Polypeptides,Glucagon Like Peptide,Glucagon Like Peptides,Glucagon Like Polypeptide,Glucagon Like Polypeptides,Glucagon, Gut,Peptide, Glucagon-Like,Polypeptide, Glucagon-Like
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005749 Gastric Inhibitory Polypeptide A gastrointestinal peptide hormone of about 43-amino acids. It is found to be a potent stimulator of INSULIN secretion and a relatively poor inhibitor of GASTRIC ACID secretion. Glucose-Dependent Insulinotropic Peptide,Gastric-Inhibitory Polypeptide,Glucose Dependent Insulinotropic Peptide,Glucose-Dependent Insulin-Releasing Peptide,Glucose Dependent Insulin Releasing Peptide,Inhibitory Polypeptide, Gastric,Insulin-Releasing Peptide, Glucose-Dependent,Insulinotropic Peptide, Glucose-Dependent,Peptide, Glucose-Dependent Insulin-Releasing,Peptide, Glucose-Dependent Insulinotropic,Polypeptide, Gastric Inhibitory,Polypeptide, Gastric-Inhibitory
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty

Related Publications

J Oben, and L Morgan, and J Fletcher, and V Marks
May 1996, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
J Oben, and L Morgan, and J Fletcher, and V Marks
November 1988, Zeitschrift fur Gastroenterologie,
J Oben, and L Morgan, and J Fletcher, and V Marks
June 1997, Scandinavian journal of gastroenterology,
J Oben, and L Morgan, and J Fletcher, and V Marks
March 1998, Cell biochemistry and function,
J Oben, and L Morgan, and J Fletcher, and V Marks
February 1993, Metabolism: clinical and experimental,
J Oben, and L Morgan, and J Fletcher, and V Marks
August 1998, The Journal of dairy research,
Copied contents to your clipboard!