Irreversible thermal denaturation of cytochrome C studied by electrospray mass spectrometry. 2009

Jiangjiang Liu, and Lars Konermann
Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.

This work uses electrospray ionization mass spectrometry (ESI-MS) in conjunction with hydrogen/deuterium exchange (HDX) and optical spectroscopy for characterizing the solution-phase properties of cytochrome c (cyt c) after heat exposure. Previous work demonstrated that heating results in irreversible denaturation for a subpopulation of proteins in the sample. However, that study did not investigate the physical reasons underlying this interesting effect. Here we report that the formation of oxidative modifications at elevated temperature plays a key role for the observed behavior. Tryptic digestion followed by tandem mass spectrometry is used to identify individual oxidation sites. Trp59 and Met80 are among the modified amino acids. In native cyt c both of these residues are buried deep within the protein structure, such that covalent modifications would be expected to be particularly disruptive. ESI-MS analysis after heat exposure results in a bimodal charge-state distribution. Oxidized protein appears predominantly in charge states around 11+, whereas a considerably lower degree of oxidation is observed for the 7+ and 8+ peaks. This finding confirms that different oxidation levels are associated with different solution-phase conformations. HDX measurements for different charge states are complicated by peak distortions arising from oxygen adduction. Nonetheless, comparison with simulated peak shapes clearly shows that the HDX properties are different for high- and low-charge states, confirming that interconversion between unfolded and folded conformers is blocked in solution. In addition to oxidation, partial aggregation upon heat exposure likely contributes to the formation of irreversibly denatured protein.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

Jiangjiang Liu, and Lars Konermann
March 1994, Analytical chemistry,
Jiangjiang Liu, and Lars Konermann
July 1994, Journal of the American Society for Mass Spectrometry,
Jiangjiang Liu, and Lars Konermann
January 2003, Rapid communications in mass spectrometry : RCM,
Jiangjiang Liu, and Lars Konermann
February 2000, Journal of mass spectrometry : JMS,
Jiangjiang Liu, and Lars Konermann
January 1968, Biopolymers,
Jiangjiang Liu, and Lars Konermann
November 2010, Journal of mass spectrometry : JMS,
Copied contents to your clipboard!