Flow cytometric analysis of autophagy in living mammalian cells. 2009

Elena Shvets, and Zvulun Elazar
Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.

Autophagy is a major intracellular catabolic pathway induced in response to amino acid starvation. Recent findings implicate it in diverse physiological/pathophysiological events, such as protein and organelle turnover, development, aging, pathogen infection, cell death, and neurodegeneration. However, experimental methods to monitor this process in mammalian cells are limited because of the deficiency of autophagic markers. Recently, MAP1-LC3 (LC3), a mammalian homolog of the yeast ubiquitin-like (UBL) protein Atg8, has been shown to selectively incorporate into the autophagosomal membrane, thus serving as a unique bona fide marker of autophagosomes in mammals. Thus, the autophagic activity can be largely determined by GFP-LC3/LC3, predominantly associated with autophagosomes (when LC3 is conjugated to phosphatidylethanolamine), both biochemically and microscopically. However, current methods to quantify autophagic activity using LC3 are time consuming, labor intensive, and require expertise in accurate interpretation. In this chapter we describe the use of flow cytometry and fluorescence-activated cell sorting (FACS) as a new assay designed to quantify autophagy in cells stably expressing GFP-LC3. Flow cytometry is a well-established technique for performing quantitative fluorescence measurements, allowing quick, accurate, and simultaneous determination of many parameters in cell subpopulations. Here flow cytometry and FACS were used to quantify the turnover of GFP-LC3 (reflecting an autophagic flux) as a reliable and simple assay to measure autophagic activity in living mammalian cells.

UI MeSH Term Description Entries
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent

Related Publications

Elena Shvets, and Zvulun Elazar
June 1991, Journal of biotechnology,
Elena Shvets, and Zvulun Elazar
July 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology,
Elena Shvets, and Zvulun Elazar
April 2007, Journal of microbiological methods,
Elena Shvets, and Zvulun Elazar
January 2008, Methods in molecular biology (Clifton, N.J.),
Elena Shvets, and Zvulun Elazar
November 1993, Journal of biotechnology,
Elena Shvets, and Zvulun Elazar
March 1984, Nihon Igaku Hoshasen Gakkai zasshi. Nippon acta radiologica,
Elena Shvets, and Zvulun Elazar
March 2006, Theriogenology,
Elena Shvets, and Zvulun Elazar
January 2004, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!