Physiological autophagy in the Syrian hamster Harderian gland. 2009

Ignacio Vega-Naredo, and Ana Coto-Montes
Departamento de MorfologĂ­a y BiologĂ­a Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain.

The Syrian hamster Harderian gland (HG) displays a huge porphyrins metabolism with sexual dimorphism. Even in male Syrian hamsters with much lower porphyrins concentration than female HG, this activity is higher than in the liver. The damage derived from constant porphyrin production, displayed by reactive oxygen species, forces the gland to develop mechanisms that allow it to continue with its normal physiology. The survival strategy of the Harderian gland is mainly based on autophagic processes that are considered as a constant renovation system. Our results show different autophagy mechanisms in Syrian hamster HG, macroautophagy and other lysosomal-like processes such as chaperone-mediated autophagy, depending on sex and probably related to oxidative stress status. This chapter describes the methods used by us to characterize the autophagic processes that are being physiologically developed by this organ under normal conditions.

UI MeSH Term Description Entries
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D002403 Cathepsins A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES. Cathepsin
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006243 Harderian Gland A sebaceous gland that, in some animals, acts as an accessory to the lacrimal gland. The harderian gland excretes fluid that facilitates movement of the third eyelid. Gland, Harderian
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy

Related Publications

Ignacio Vega-Naredo, and Ana Coto-Montes
April 2001, Free radical biology & medicine,
Ignacio Vega-Naredo, and Ana Coto-Montes
May 1996, Microscopy research and technique,
Ignacio Vega-Naredo, and Ana Coto-Montes
December 1994, Molecular and cellular endocrinology,
Ignacio Vega-Naredo, and Ana Coto-Montes
May 1996, The Anatomical record,
Ignacio Vega-Naredo, and Ana Coto-Montes
March 1988, Journal of reproduction and fertility,
Ignacio Vega-Naredo, and Ana Coto-Montes
January 1994, Biological signals,
Ignacio Vega-Naredo, and Ana Coto-Montes
June 1996, Microscopy research and technique,
Ignacio Vega-Naredo, and Ana Coto-Montes
January 1972, Science (New York, N.Y.),
Ignacio Vega-Naredo, and Ana Coto-Montes
January 1972, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
Ignacio Vega-Naredo, and Ana Coto-Montes
March 1996, General and comparative endocrinology,
Copied contents to your clipboard!