Synthesis and antitumor properties of activated cyclophosphamide analogues. 1991

R F Borch, and G W Canute
Department of Pharmacology, University of Rochester, New York 14642.

A series of 5- and 6-substituted cyclophosphamide analogues has been prepared, and their 31P NMR kinetics of phosphoramide mustard (PDA) release and in vitro and in vivo cytotoxicity have been evaluated. cis-4-Hydroxy-5-methoxycyclophosphamide equilibrated very slowly and to a minor extent with the ring-opened aldophosphamide analogues in aqueous buffer; release of PDA was observed to a minor extent and only at high (1 M) buffer concentrations. This analogue was essentially inactive in vitro against L1210 and P388 leukemia cells. 6-Phenylcyclophosphamide and its 4-hydroperoxy derivative were potent inhibitors of blood acetylcholinesterase and were lethal at therapeutic doses in mice. In contrast, 4-hydroperoxy-6-(4-pyridyl)cyclophosphamide did not inhibit acetylcholinesterase and showed significant antitumor activity in vitro and in vivo against both wild-type and cyclophosphamide-resistant L1210 leukemia. The 4-hydroperoxy-6-arylcyclophosphamides were generally active in vitro against both wild-type and cyclophosphamide-resistant L1210 and P388 cells, and several analogues showed significant activity in vivo. Surprisingly, there was no correlation between antitumor activity in vitro and the rate of PDA release in aqueous buffer. Several compounds that showed essentially no release of PDA in aqueous buffer over several hours were highly cytotoxic to leukemia cells following a 1-h exposure in vitro. These results show that activated cyclophosphamide analogues substituted at the 6-position are not cross-resistant in these leukemia cell lines, and that a specific intracellular activation mechanism may be catalyzing PDA release in these analogues.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007939 Leukemia L1210 An experimental LYMPHOCYTIC LEUKEMIA of mice. Leukemia L 1210,L 1210, Leukemia,L1210, Leukemia
D007941 Leukemia P388 An experimental lymphocytic leukemia originally induced in DBA/2 mice by painting with methylcholanthrene. P388D(1) Leukemia,P388, Leukemia
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010752 Phosphoramide Mustards A group of nitrogen mustard compounds which are substituted with a phosphoramide group or its derivatives. They are usually cytotoxic and used as antineoplastic agents. Mustards, Phosphoramide
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R F Borch, and G W Canute
December 2008, Anti-cancer agents in medicinal chemistry,
R F Borch, and G W Canute
September 1983, Journal of medicinal chemistry,
R F Borch, and G W Canute
March 1972, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
R F Borch, and G W Canute
March 2015, European journal of medicinal chemistry,
R F Borch, and G W Canute
May 1981, Journal of medicinal chemistry,
R F Borch, and G W Canute
May 2007, Chemistry & biodiversity,
R F Borch, and G W Canute
May 1993, Journal of medicinal chemistry,
R F Borch, and G W Canute
September 1999, Bioorganic & medicinal chemistry,
R F Borch, and G W Canute
September 1998, Bioorganic & medicinal chemistry letters,
R F Borch, and G W Canute
May 1980, Journal of medicinal chemistry,
Copied contents to your clipboard!