Application of high-resolution scanning electron microscopy to biological macromolecules. 1991

T Nakadera, and A Mitsushima, and K Tanaka
Department of Anatomy, Tottori University School of Medicine, Japan.

The development of ultrahigh-resolution scanning electron microscopes (SEMs) has made the observation of biological macromolecules feasible, but adequate preparation methods have not yet been established. Although it has been possible to observe some molecules after they have been spread on a carbon substrate, this method has not proved suitable for other molecules which exhibit lower contrast, or are more susceptible to damage by the electron beam. In this study we have applied heavy-metal impregnation methods using phosphotungstic acid, uranyl acetate, or osmium tetroxide mordanted by tannic acid. In addition, contamination due to the electron beam was reduced by improving the vacuum in the specimen chamber, and by the use of a heated specimen stage. Using these measures, haemocyanin, ferritin, apoferritin, thyroglobulin and immunoglobulin M were successfully image. Ultrahigh-resolution SEM seems likely to become an important means for studying the morphology of biological macromolecules.

UI MeSH Term Description Entries
D007075 Immunoglobulin M A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally was called a macroglobulin. Gamma Globulin, 19S,IgM,IgM Antibody,IgM1,IgM2,19S Gamma Globulin,Antibody, IgM
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D005293 Ferritins Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types. Basic Isoferritin,Ferritin,Isoferritin,Isoferritin, Basic
D006433 Hemocyanins Metalloproteins that function as oxygen transport proteins in the HEMOLYMPH of MOLLUSKS and ARTHROPODS. They are characterized by two copper atoms, coordinated with HISTIDINE residues, that reversibly bind a single oxygen molecule; they do not contain HEME groups. Hemocyanin,alpha-Haemocyanin,alpha-Hemocyanin,alpha-Hemocyanins,alpha Haemocyanin,alpha Hemocyanin,alpha Hemocyanins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001052 Apoferritins The protein components of ferritins. Apoferritins are shell-like structures containing nanocavities and ferroxidase activities. Apoferritin shells are composed of 24 subunits, heteropolymers in vertebrates and homopolymers in bacteria. In vertebrates, there are two types of subunits, light chain and heavy chain. The heavy chain contains the ferroxidase activity. Apoferritin,Ferritin H Subunit,Ferritin Heavy Chain,Ferritin L Subunit,Ferritin Light Chain,H Ferritin,H-Ferritin,L-Ferritin,Ferritin, H,H Subunit, Ferritin,Heavy Chain, Ferritin,L Ferritin,L Subunit, Ferritin,Light Chain, Ferritin
D013954 Thyroglobulin

Related Publications

T Nakadera, and A Mitsushima, and K Tanaka
January 1989, Journal of electron microscopy,
T Nakadera, and A Mitsushima, and K Tanaka
January 1980, Ultramicroscopy,
T Nakadera, and A Mitsushima, and K Tanaka
May 1991, Seikagaku. The Journal of Japanese Biochemical Society,
T Nakadera, and A Mitsushima, and K Tanaka
November 1992, Ultramicroscopy,
T Nakadera, and A Mitsushima, and K Tanaka
April 1989, Nihon Seikeigeka Gakkai zasshi,
T Nakadera, and A Mitsushima, and K Tanaka
March 1991, Scanning microscopy,
T Nakadera, and A Mitsushima, and K Tanaka
July 1983, Science (New York, N.Y.),
T Nakadera, and A Mitsushima, and K Tanaka
October 1992, Ultramicroscopy,
T Nakadera, and A Mitsushima, and K Tanaka
January 1992, Archives of histology and cytology,
T Nakadera, and A Mitsushima, and K Tanaka
January 1989, Journal of electron microscopy,
Copied contents to your clipboard!