Gap-junction quantification in biological tissues: freeze-fracture replicas versus thin sections. 1991

J S Ryerse, and B A Nagel
Department of Pathology, St Louis University School of Medicine, MO 63104.

The relative efficiency of freeze-fracture replicas versus thin sections for the visualization and quantification of gap junctions in biological tissues has been evaluated. Both methods may underestimate gap-junction number--thin sections for reasons of tissue resolution and freeze-fracture replicas due to the mechanics of the fracturing process. Freeze-fracture misses gap junctions in regions of plasma membrane which are highly contoured, such as the overlapping basal cell processes of Drosophila imaginal wing discs and the interdigitating lateral membrane plications of intercalated discs in cardiac tissue. If the missed gap junctions are relatively large, as they are in both of these examples, freeze-fracture significantly underestimates the total gap-junctional area. Thin sections may miss small gap junctions, but in tissues which contain a range of gap-junction sizes the lost junctions constitute a relatively small fraction of the total junctional area. In neoplastic imaginal wing discs, thin sections were as efficient as freeze-fracture replicas in identifying even the smallest gap junctions. Although freeze-fracture may be the better technique for the qualitative and quantitative documentation of small gap junctions in tissues with relatively flat to gently contoured plasma membranes and thin sections may be the superior method for gap-junction quantification in tissues containing a range of gap-junctional sizes and highly contoured cellular processes, the data suggest that a combination of the two approaches should be utilized whenever possible.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008867 Microtomy The technique of using a microtome to cut thin or ultrathin sections of tissues embedded in a supporting substance. The microtome is an instrument that hold a steel, glass or diamond knife in clamps at an angle to the blocks of prepared tissues, which it cuts in sections of equal thickness. Thin Sectioning,Ultramicrotomy,Sectioning, Thin,Sectionings, Thin,Thin Sectionings
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J S Ryerse, and B A Nagel
January 1976, Journal of electron microscopy,
J S Ryerse, and B A Nagel
March 1981, Cell biology international reports,
J S Ryerse, and B A Nagel
January 1987, Journal of electron microscopy,
J S Ryerse, and B A Nagel
April 1971, Journal of ultrastructure research,
J S Ryerse, and B A Nagel
January 1988, Virchows Archiv. B, Cell pathology including molecular pathology,
J S Ryerse, and B A Nagel
August 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J S Ryerse, and B A Nagel
December 1983, Nihon Sanka Fujinka Gakkai zasshi,
Copied contents to your clipboard!