Newer aspects of the pathophysiology of sickle cell disease vaso-occlusion. 2009

Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
Hematology and Hemotherapy Center, School of Medical Sciences, UNICAMP, São Paulo, Brazil. conran@unicamp.br

Sickle cell disease is an inherited disorder of hemoglobin (Hb) synthesis, caused by a single nucleotide substitution (GTG>GAG) at the sixth codon of the beta-globin gene, leading to the production of a defective form of Hb, Hb S. When deoxygenated, Hb S polymerizes, damaging the sickle erythrocyte and it is this polymerization that is the primary indispensable event in the molecular pathogenesis of sickle cell disease. Hb S polymerization results in a series of cellular alterations in red cell morphology and function that shorten the red cell life span and leads to vascular occlusion. Sickle cell disease vaso-occlusion is now known to constitute a complex multifactorial process characterized by recurrent vaso-occlusion, ischemia-reperfusion injury, and oxidative stress with consequent vascular endothelial cell activation that induces a chronic inflammatory state in sickle cell disease individual and is propagated by elevated levels of circulating inflammatory cytokines. Activation of the endothelium results in the induction of endothelial adhesion molecule expression that mediates red and white cell adhesion to the vessel wall and the formation of heterocellular aggregates, followed by secondary red cell trapping, all of which contribute to reduced blood flow and eventually obstruction of the micro-circulation. Reduced nitric oxide bioavailability, caused principally by its consumption by cell-free Hb, liberated during intravascular hemolysis, contributes to this process by facilitating vasoconstriction and adhesion molecule activity.

UI MeSH Term Description Entries
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000755 Anemia, Sickle Cell A disease characterized by chronic hemolytic anemia, episodic painful crises, and pathologic involvement of many organs. It is the clinical expression of homozygosity for hemoglobin S. Hemoglobin S Disease,HbS Disease,Sickle Cell Anemia,Sickle Cell Disease,Sickle Cell Disorders,Sickling Disorder Due to Hemoglobin S,Anemias, Sickle Cell,Cell Disease, Sickle,Cell Diseases, Sickle,Cell Disorder, Sickle,Cell Disorders, Sickle,Disease, Hemoglobin S,Hemoglobin S Diseases,Sickle Cell Anemias,Sickle Cell Diseases,Sickle Cell Disorder
D014652 Vascular Diseases Pathological processes involving any of the BLOOD VESSELS in the cardiac or peripheral circulation. They include diseases of ARTERIES; VEINS; and rest of the vasculature system in the body. Disease, Vascular,Diseases, Vascular,Vascular Disease
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
January 1988, The American journal of pediatric hematology/oncology,
Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
January 2013, Hematology. American Society of Hematology. Education Program,
Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
December 2013, Blood,
Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
October 2005, Hematology/oncology clinics of North America,
Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
June 1991, Hematology/oncology clinics of North America,
Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
May 2023, British journal of haematology,
Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
May 2020, Blood,
Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
December 1996, Hematology/oncology clinics of North America,
Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
August 2011, Nucleic acid therapeutics,
Nicola Conran, and Carla F Franco-Penteado, and Fernando F Costa
March 2013, British journal of sports medicine,
Copied contents to your clipboard!