Modulating alpha-actinin-4 dynamics in podocytes. 2009

Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada.

Podocytes are epithelial cells that line the outer aspect of renal blood vessels and provide a platform for the kidney's filtering apparatus, the slit diaphragm. Mutations in alpha-actinin-4, an actin bundling protein highly expressed in podocytes, result in increased affinity for actin and cause a familial form of focal segmental glomerulosclerosis. We hypothesized that such gain-of-affinity mutations would override alpha-actinin-4's sensitivity to regulatory factors such as calcium (acting via two EF-hand motifs), and phosphoinositides. We generated calcium- (mutEF) and phosphoinositide- (mutPI) insensitive variants of alpha-actinin-4, comparing their properties to a disease-associated mutant (K256E) and to the wildtype (wt) protein. alpha-Actinin-4(mutPI) displayed increased affinity for actin, while the affinity of alpha-actinin-4(mutEF) was unchanged. Addition of calcium to actin sedimentation assays caused a decrease in the association of alpha-actinin-4(wt) with filamentous actin, while phosphoinositides generally increased this association. Similar to alpha-actinin-4(K256E), alpha-actinin-4(mutPI) was mislocalized in cultured podocytes, being preferentially associated with filamentous actin and focal adhesions. Fluorescence recovery after photobleaching experiments revealed a rapid turnover of alpha-actinin-4(wt) and alpha-actinin-4(mutEF) along stress fibers and focal adhesions, while the turnover of alpha-actinin-4(K256E) and alpha-actinin-4(mutPI) was dramatically reduced at these subcellular locales. Equibiaxial mechanical stimulation of podocytes, a mimic of intraglomerular forces, reduced podocyte surface area by 50%; this decrease was more severe (70%) in the presence of high-affinity mutants of alpha-actinin-4. These data suggest that dynamic regulation of alpha-actinin-4/actin interactions may be necessary for maintaining podocyte structure in response to glomerular hydrostatic forces.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D000185 Actinin A protein factor that regulates the length of R-actin. It is chemically similar, but immunochemically distinguishable from actin. alpha-Actinin,Eu-Actinin,beta-Actinin,Eu Actinin,alpha Actinin,beta Actinin
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical

Related Publications

Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
September 2006, Kidney international,
Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
April 2005, The Journal of biological chemistry,
Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
February 2003, The Journal of biological chemistry,
Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
February 2017, The Journal of biological chemistry,
Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
July 2005, Molecular and cellular biology,
Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
April 2000, The Journal of biological chemistry,
Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
November 2022, Life science alliance,
Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
March 2001, Cell motility and the cytoskeleton,
Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
January 2008, Internal medicine (Tokyo, Japan),
Jean-Louis R Michaud, and Mona Hosseini-Abardeh, and Kevin Farah, and Chris R J Kennedy
August 2019, Translational cancer research,
Copied contents to your clipboard!