Localization of the low-affinity nerve growth factor receptor p75 in human limbal epithelial cells. 2008

Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
Inflammatory Diseases Research Unit, School of Medical Sciences, University of New South Wales, and Department of Ophthalmology, Prince of Wales Hospital, Sydney, NSW, Australia. n.digirolamo@unsw.edu.au

Biological effects of nerve growth factor (NGF) are mediated through receptors known as nerve growth factor receptors (NGFR), which include p75 and TrkA. This study was initiated after identifying NGFR as an up-regulated gene in the limbus by cDNA microarray analysis and we postulate that its expression may be indicative of a stem/progenitor cell phenotype. Immunohistochemistry was performed on normal human adult (n=5) and foetal (n=3) corneal tissue using antibodies directed against p75, TrkA, NGF, p63, ABCG2 and CK3/12. Limbal, conjunctival and pterygium tissue was obtained from patients (n=10) undergoing pterygium resection and used for immunohistochemical assessment. Paraffin-embedded archival human skin specimens (n=4) were also evaluated. In vitro expression of NGFR was determined in limbal, conjunctival and pterygium-derived epithelial cells. p75 was selectively expressed by basal epithelial cells in pterygia, conjunctiva and limbus, but was absent in the central cornea. These results were confirmed with two additional p75 specific antibodies. In contrast, TrkA was found in full-thickness pterygium, conjunctival, limbal and corneal epithelium in both adult and foetal eyes. p75 expression was identified in a small percentage, while TrkA was found on the entire population of cultured conjunctival, limbal and pterygium-derived epithelial cells. This receptor was also observed in selective regions of the human epidermis and hair follicle bulge. Our results illustrate the selective expression of p75 in basal pterygium, conjunctival and limbal epithelium, while staining was absent in adult and foetal central cornea. p75 may represent an additional ocular surface epithelial stem/progenitor cell signature gene.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell

Related Publications

Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
September 2002, Journal of neuroscience research,
Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
December 1999, FEBS letters,
Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
January 2021, Frontiers in pediatrics,
Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
April 2000, The American journal of pathology,
Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
October 1998, Neuroscience letters,
Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
April 2003, Journal of neuroscience methods,
Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
May 1993, Neuroscience,
Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
October 1996, Brain research,
Nick Di Girolamo, and Maria Sarris, and Jeanie Chui, and Haroon Cheema, and Minas T Coroneo, and Denis Wakefield
November 1997, Neurochemical research,
Copied contents to your clipboard!