Influence of dietary creatine supplementation on muscle phosphocreatine kinetics during knee-extensor exercise in humans. 2009

Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
University of Exeter, Exeter, Devon EX1 2 LU, UK. a.m.jones@exeter.ac.uk

We hypothesized that increasing skeletal muscle total creatine (Cr) content through dietary Cr supplementation would result in slower muscle phosphocreatine concentration ([PCr]) kinetics, as assessed using (31)P magnetic resonance spectroscopy, following the onset and offset of both moderate-intensity (Mod) and heavy-intensity (Hvy) exercise. Seven healthy males (age 29 +/- 6 yr, mean +/- SD) completed a series of square-wave transitions to Mod and Hvy knee extensor exercise inside the bore of a 1.5-T superconducting magnet both before and after a 5-day period of Cr loading (4x 5 g/day of creatine monohydrate). Cr supplementation resulted in an approximately 8% increase in the resting muscle [PCr]-to-[ATP] ratio (4.66 +/- 0.27 vs. 5.04 +/- 0.22; P < 0.05), consistent with a significant increase in muscle total Cr content consequent to the intervention. The time constant for muscle [PCr] kinetics was increased following Cr loading for Mod exercise (control: 15 +/- 8 vs. Cr: 25 +/- 9 s; P < 0.05) and subsequent recovery (control: 14 +/- 8 vs. Cr: 27 +/- 8 s; P < 0.05) and for Hvy exercise (control: 54 +/- 18 vs. Cr: 72 +/- 30 s; P < 0.05), but not for subsequent recovery (control: 41 +/- 11 vs. Cr: 44 +/- 6 s). The magnitude of the increase in [PCr] following Cr loading was correlated (P < 0.05) with the extent of the slowing of the [PCr] kinetics for the moderate off-transient (r = 0.92) and the heavy on-transient (r = 0.71). These data demonstrate, for the first time in humans, that an increase in muscle [PCr] results in a slowing of [PCr] dynamics in exercise and subsequent recovery.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010725 Phosphocreatine An endogenous substance found mainly in skeletal muscle of vertebrates. It has been tried in the treatment of cardiac disorders and has been added to cardioplegic solutions. (Reynolds JEF(Ed): Martindale: The Extra Pharmacopoeia (electronic version). Micromedex, Inc, Englewood, CO, 1996) Creatine Phosphate,Neoton,Phosphocreatine, Disodium Salt,Phosphorylcreatine,Disodium Salt Phosphocreatine,Phosphate, Creatine
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D003401 Creatine An amino acid that occurs in vertebrate tissues and in urine. In muscle tissue, creatine generally occurs as phosphocreatine. Creatine is excreted as CREATININE in the urine.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
March 1995, Medicine and science in sports and exercise,
Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
October 1998, Journal of applied physiology (Bethesda, Md. : 1985),
Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
November 2001, The Journal of physiology,
Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
December 2005, Medicine and science in sports and exercise,
Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
May 1994, The American journal of physiology,
Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
July 2006, Journal of applied physiology (Bethesda, Md. : 1985),
Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
December 2007, International journal of sport nutrition and exercise metabolism,
Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
December 1989, The American journal of physiology,
Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
November 1999, Clinical science (London, England : 1979),
Andrew M Jones, and Daryl P Wilkerson, and Jonathan Fulford
November 1996, The American journal of physiology,
Copied contents to your clipboard!