A phylogenetic view of bacterial ribonucleases. 2009

Antoine Danchin
Institut Pasteur, Docteur Roux, Paris Cedex 15, France.

A phylogenetic analysis of bacterial genomes shows them to comprise persistent genes, the "paleome" (Greek: palaios, ancient, reminiscent of the origin of life), associated with genes permitting development of life in a particular niche, the "cenome" (from koinos, common, a radical often used in ecology). Most ribonucleases belong to the former, demonstrating their central position in core life processes. These enzymes appear to have often (but not always) evolved through consistent scenarios, generally grouping bacteria into well-defined clades. The evolution of phosphorylases (which salvage energy) is particularly revealing, resulting in diverse complex structures whose function is to degrade RNA. The degradosome of the gamma-Proteobacteria is a paradigm of such complex structures that emphasizes the essential role of energy in degradative processes. The A+T-rich Firmicutes behave in a highly original manner, where many ribonucleases and related proteins coevolve as a group. The recent identification of novel activities in these organisms, stresses the (underestimated) importance of degradation of very short RNAs, as well as 5'-3' degradative processes in Bacteria.

UI MeSH Term Description Entries
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline

Related Publications

Antoine Danchin
December 2002, Nucleic acids research,
Antoine Danchin
October 2021, Annual review of microbiology,
Antoine Danchin
September 2011, Microbial biotechnology,
Antoine Danchin
January 1976, Progress in nucleic acid research and molecular biology,
Antoine Danchin
May 1968, The British journal of psychiatry : the journal of mental science,
Antoine Danchin
December 2009, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
Antoine Danchin
January 2013, Biochimica et biophysica acta,
Antoine Danchin
June 1999, FEMS microbiology reviews,
Antoine Danchin
January 1982, Folia biologica,
Copied contents to your clipboard!