Combination therapy with hypothermia for treatment of cerebral ischemia. 2009

Xian N Tang, and Liping Liu, and Midori A Yenari
Department of Neurology, University of California, San Francisco & San Francisco Veterans Administration Medical Center, San Francisco, California 94121, USA.

Mild hypothermia is an established neuroprotectant in the laboratory, showing remarkable and consistent effects across multiple laboratories and models of brain injury. At the clinical level, mild hypothermia has shown benefits in patients who have suffered cardiac arrest and in some pediatric populations suffering hypoxic brain insults. However, a review of the literature has demonstrated that in order to appreciate the maximum benefits of hypothermia, brain cooling needs to begin soon after the insult, maintained for relatively long period periods of time, and, in the case of ischemic stroke, should be applied in conjunction with the re-establishment of cerebral perfusion. Translating this to the clinical arena can be challenging, especially rapid cooling and the re-establishment of perfusion. The addition of a second neuroprotectant could potentially (1) enhance overall protection, (2) prolong the temporal therapeutic window for hypothermia, or (3) provide protection where hypothermic treatment is only transient. Combination therapies resulting in recanalization following ischemic stroke would improve the likelihood of a good outcome, as the experimental literature suggests more consistent neuroprotection against ischemia with reperfusion, than ischemia without. Since recombinant tissue plasiminogen activator (rt-PA) is the only FDA approved treatment for acute ischemic stroke, and acts to recanalize occluded vessels, it is an obvious initial strategy to combine with hypothermia. However, the effects of thrombolytics are also temperature dependent, and the risk of hemorrhage is significant. The experimental data nevertheless seem to favor a combinatorial approach. Thus, in order to apply hypothermia to a broader range of patients, combination strategies should be further investigated.

UI MeSH Term Description Entries
D007036 Hypothermia, Induced Abnormally low BODY TEMPERATURE that is intentionally induced in warm-blooded animals by artificial means. In humans, mild or moderate hypothermia has been used to reduce tissue damages, particularly after cardiac or spinal cord injuries and during subsequent surgeries. Induced Hypothermia,Mild Hypothermia, Induced,Moderate Hypothermia, Induced,Targeted Temperature Management,Therapeutic Hypothermia,Hypothermia, Therapeutic,Induced Mild Hypothermia,Induced Mild Hypothermias,Induced Moderate Hypothermia,Induced Moderate Hypothermias,Mild Hypothermias, Induced,Moderate Hypothermias, Induced,Targeted Temperature Managements
D010959 Tissue Plasminogen Activator A proteolytic enzyme in the serine protease family found in many tissues which converts PLASMINOGEN to FIBRINOLYSIN. It has fibrin-binding activity and is immunologically different from UROKINASE-TYPE PLASMINOGEN ACTIVATOR. The primary sequence, composed of 527 amino acids, is identical in both the naturally occurring and synthetic proteases. Alteplase,Plasminogen Activator, Tissue-Type,T-Plasminogen Activator,Tissue-Type Plasminogen Activator,Actilyse,Activase,Lysatec rt-PA,TTPA,Tisokinase,Tissue Activator D-44,Lysatec rt PA,Lysatec rtPA,Plasminogen Activator, Tissue,Plasminogen Activator, Tissue Type,T Plasminogen Activator,Tissue Activator D 44,Tissue Type Plasminogen Activator
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D002985 Clinical Protocols Precise and detailed plans for the study of a medical or biomedical problem and/or plans for a regimen of therapy. Protocols, Clinical,Research Protocols, Clinical,Treatment Protocols,Clinical Protocol,Clinical Research Protocol,Clinical Research Protocols,Protocol, Clinical,Protocol, Clinical Research,Protocols, Clinical Research,Protocols, Treatment,Research Protocol, Clinical,Treatment Protocol
D005343 Fibrinolytic Agents Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN. Antithrombic Drug,Antithrombotic Agent,Antithrombotic Agents,Fibrinolytic Agent,Fibrinolytic Drug,Thrombolytic Agent,Thrombolytic Agents,Thrombolytic Drug,Antithrombic Drugs,Fibrinolytic Drugs,Thrombolytic Drugs,Agent, Antithrombotic,Agent, Fibrinolytic,Agent, Thrombolytic,Agents, Antithrombotic,Drug, Antithrombic,Drug, Fibrinolytic,Drug, Thrombolytic,Drugs, Antithrombic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015912 Thrombolytic Therapy Use of infusions of FIBRINOLYTIC AGENTS to destroy or dissolve thrombi in blood vessels or bypass grafts. Fibrinolytic Therapy,Thrombolysis, Therapeutic,Therapeutic Thrombolysis,Therapy, Fibrinolytic,Therapy, Thrombolytic,Fibrinolytic Therapies,Therapeutic Thrombolyses,Therapies, Fibrinolytic,Therapies, Thrombolytic,Thrombolyses, Therapeutic,Thrombolytic Therapies

Related Publications

Xian N Tang, and Liping Liu, and Midori A Yenari
March 2018, Molecular neurobiology,
Xian N Tang, and Liping Liu, and Midori A Yenari
January 2013, The American journal of emergency medicine,
Xian N Tang, and Liping Liu, and Midori A Yenari
January 1993, Cerebrovascular and brain metabolism reviews,
Xian N Tang, and Liping Liu, and Midori A Yenari
September 2003, Stroke,
Xian N Tang, and Liping Liu, and Midori A Yenari
January 2019, Pakistan journal of medical sciences,
Xian N Tang, and Liping Liu, and Midori A Yenari
May 1981, Minerva medica,
Copied contents to your clipboard!