Control of alternative splicing by signal-dependent degradation of splicing-regulatory proteins. 2009

Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.

Alternative pre-mRNA splicing is a major gene expression regulatory mechanism in metazoan organisms. Proteins that bind pre-mRNA elements and control assembly of splicing complexes regulate utilization of pre-mRNA alternative splice sites. To understand how signaling pathways impact this mechanism, an RNA interference screen in Drosophila S2 cells was used to identify proteins that regulate TAF1 (TBP-associated factor 1) alternative splicing in response to activation of the ATR (ATM-RAD3-related) signaling pathway by the chemotherapeutic drug camptothecin (CPT). The screen identified 15 proteins that, when knocked down, caused the same change in TAF1 alternative splicing as CPT treatment. However, combined RNA interference and CPT treatment experiments indicated that only a subset of the identified proteins are targets of the CPT-induced signal, suggesting that multiple independent pathways regulate TAF1 alternative splicing. To understand how signals modulate the function of splicing factors, we characterized one of the CPT targets, Tra2 (Transformer-2). CPT was found to down-regulate Tra2 protein levels. CPT-induced Tra2 down-regulation was ATR-dependent and temporally paralleled the change in TAF1 alternative splicing, supporting the conclusion that Tra2 directly regulates TAF1 alternative splicing. Additionally, CPT-induced Tra2 down-regulation occurred independently of new protein synthesis, suggesting a post-translational mechanism. The proteasome inhibitor MG132 reduced CPT-induced Tra2 degradation and TAF1 alternative splicing, and mutation of evolutionarily conserved Tra2 lysine 81, a potential ubiquitin conjugation site, to arginine inhibited CPT-induced Tra2 degradation, supporting a proteasome-dependent alternative splicing mechanism. We conclude that CPT-induced TAF1 alternative splicing occurs through ATR-signaled degradation of a subset of splicing-regulatory proteins.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017346 Protein Serine-Threonine Kinases A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors. Protein-Serine-Threonine Kinases,Serine-Threonine Protein Kinase,Serine-Threonine Protein Kinases,Protein-Serine Kinase,Protein-Serine-Threonine Kinase,Protein-Threonine Kinase,Serine Kinase,Serine-Threonine Kinase,Serine-Threonine Kinases,Threonine Kinase,Kinase, Protein-Serine,Kinase, Protein-Serine-Threonine,Kinase, Protein-Threonine,Kinase, Serine-Threonine,Kinases, Protein Serine-Threonine,Kinases, Protein-Serine-Threonine,Kinases, Serine-Threonine,Protein Kinase, Serine-Threonine,Protein Kinases, Serine-Threonine,Protein Serine Kinase,Protein Serine Threonine Kinase,Protein Serine Threonine Kinases,Protein Threonine Kinase,Serine Threonine Kinase,Serine Threonine Kinases,Serine Threonine Protein Kinase,Serine Threonine Protein Kinases

Related Publications

Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
October 2014, Nature reviews. Genetics,
Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
February 2017, Molecular cell,
Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
April 2021, Journal of molecular biology,
Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
April 2022, Nature communications,
Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
January 2007, Advances in experimental medicine and biology,
Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
September 2016, Oncogene,
Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
July 2020, International journal of molecular sciences,
Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
June 2005, Current opinion in neurobiology,
Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
June 2011, Molecular and cellular biology,
Rebeccah J Katzenberger, and Matthew S Marengo, and David A Wassarman
December 2007, Molecular and cellular biology,
Copied contents to your clipboard!