A modified power-law formula for inhomogeneity corrections in beams of high-energy x rays. 1991

S J Thomas
Medical Physics Department, Addenbrooke's Hospital, Cambridge, United Kingdom.

The Batho power-law formula is in common use in many treatment planning systems to correct for the presence of lungs and other inhomogeneities. While giving excellent agreement with measurement for Cobalt-60 radiation, it tends to underestimate the lung correction required for higher energy x rays and is undefined for distances beyond an interface less than the buildup distance. This paper suggests a simple modification that greatly improves the agreement with measured data and gives a continuously defined function at all depths. Measurements have been made in a polystyrene and cork phantom to simulate the effects of lung; data are presented for beams of 8-MV x rays, 16-MV x rays, and Cobalt-60 gamma rays.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008953 Models, Anatomic Three-dimensional representation to show anatomic structures. Models may be used in place of intact animals or organisms for teaching, practice, and study. Anatomic Models,Models, Surgical,Moulages,Models, Anatomical,Anatomic Model,Anatomical Model,Anatomical Models,Model, Anatomic,Model, Anatomical,Model, Surgical,Moulage,Surgical Model,Surgical Models
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D010315 Particle Accelerators Devices which accelerate electrically charged atomic or subatomic particles, such as electrons, protons or ions, to high velocities so they have high kinetic energy. Betatrons,Linear Accelerators,Accelerator, Linear,Accelerator, Particle,Accelerators, Linear,Accelerators, Particle,Betatron,Linear Accelerator,Particle Accelerator
D011879 Radiotherapy Dosage The total amount of radiation absorbed by tissues as a result of radiotherapy. Dosage, Radiotherapy,Dosages, Radiotherapy,Radiotherapy Dosages
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy
D003037 Cobalt Radioisotopes Unstable isotopes of cobalt that decay or disintegrate emitting radiation. Co atoms with atomic weights of 54-64, except 59, are radioactive cobalt isotopes. Radioisotopes, Cobalt
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations

Related Publications

S J Thomas
January 1988, Australasian physical & engineering sciences in medicine,
S J Thomas
October 2000, Physics in medicine and biology,
S J Thomas
August 1986, Physics in medicine and biology,
S J Thomas
May 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology,
S J Thomas
January 1982, Medical physics,
S J Thomas
July 1994, Medical physics,
S J Thomas
November 1973, Radiology,
Copied contents to your clipboard!