Activation of skeletal alpha-actin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. 1991

T C Lee, and K L Chow, and P Fang, and R J Schwartz
Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030.

Three upstream CBAR cis-acting promoter elements, containing the inner core CC(A/T)6GG of the serum response element (SRE), are required for myogenic cell type-restricted expression of the avian skeletal alpha-actin gene (K.L. Chow and R.J. Schwartz, Mol. Cell. Biol. 10:528-538, 1990). These actin SRE elements display differential binding properties with two distinct nuclear proteins, serum response factor (SRF) and another factor described here as F-ACT1. SRF is able to bind to all actin SREs with various affinities. This multisite interaction is marked by cooperative binding events in that the two high-affinity proximal and distal SREs facilitate the weak central-site interaction with SRF, leading to the formation of a higher-order SRF-promoter complex. Functional analyses reveal that undisrupted multiple SRF-DNA interactions are absolutely essential for promoter activity in myogenic cells. F-ACT1, present at higher levels in nonmyogenic cells and replicating myoblasts than in myotubes, binds solely to the proximal SRE, and its binding is mutually exclusive with that of SRF owing to their overlapping base contacts. The cooperative promoter binding by SRF, however, can effectively displace prebound F-ACT1. In addition, an intact F-ACT1 binding site acts as a negative promoter element by restricting developmentally timed expression in myoblasts. F-ACT1 may therefore act as a repressor of skeletal alpha-actin gene transcription. This interplay between F-ACT1 and SRF may constitute a developmental as well as a physiologically regulated mechanism which modulates sarcomeric actin gene expression.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

T C Lee, and K L Chow, and P Fang, and R J Schwartz
February 1990, Molecular and cellular biology,
T C Lee, and K L Chow, and P Fang, and R J Schwartz
February 1991, Proceedings of the National Academy of Sciences of the United States of America,
T C Lee, and K L Chow, and P Fang, and R J Schwartz
June 1992, The Journal of biological chemistry,
T C Lee, and K L Chow, and P Fang, and R J Schwartz
October 1992, Proceedings of the National Academy of Sciences of the United States of America,
T C Lee, and K L Chow, and P Fang, and R J Schwartz
August 1992, Molecular and cellular biology,
T C Lee, and K L Chow, and P Fang, and R J Schwartz
May 1995, The American journal of physiology,
T C Lee, and K L Chow, and P Fang, and R J Schwartz
May 1995, The Journal of biological chemistry,
Copied contents to your clipboard!