Intracisternal A-type particle-mediated activations of cytokine genes in a murine myelomonocytic leukemia: generation of functional cytokine mRNAs by retroviral splicing events. 1991

K B Leslie, and F Lee, and J W Schrader
Biomedical Research Centre, University of British Columbia, Vancouver, Canada.

Previously we have described the derivation of three distinct classes of leukemic cell clones from a single in vivo-passaged myelomonocytic leukemia, WEHI-274, that arose in a mouse infected with the Abelson leukemia virus/Moloney leukemia virus complex (K. B. Leslie and J. W. Schrader, Mol. Cell. Biol. 9:2414-2423, 1989). The three classes of cell clones were characterized by distinct patterns of growth in vitro, the production of cytokines, and the presence of cytokine gene rearrangements. However, all three classes of WEHI-274 clones bore a common rearrangement of the c-myb gene, suggesting that all were derived from the one ancestral cell and that at least three distinct and independent autostimulatory events were involved in the progression of a single myeloid leukemic disease. In this article, we demonstrate that the autocrine growth factor production by the WEHI-274 leukemic clones resulted from cytokine gene activations mediated by the insertion of an intracisternal A-type particle (IAP) sequence 5' to the interleukin-3 (IL-3) gene, in the case of the class I clone, or 5' to the gene for granulocyte-macrophage colony-stimulating factor (GM-CSF), in the case of the class II clones. IAPs are defective murine retroviruses encoded by endogenous genetic elements which may undergo transpositions and act as endogenous mutagens. The functional IL-3 and GM-CSF mRNAs were generated by mechanisms in which the splice donor apparatus of the IAP sequence has been used in IAP gag-to-IL-3 or -GM-CSF splicing events.

UI MeSH Term Description Entries
D007426 Genes, Intracisternal A-Particle Genes of IAP elements (a family of retrovirus-like genetic elements) which code for virus-like particles (IAPs) found regularly in rodent early embryos. ("Intracisternal" refers to the cisternae of the endoplasmic reticulum.) Under certain circumstances, such as DNA hypomethylation they are transcribed. Their transcripts are found in a variety of neoplasms, including plasmacytomas, neuroblastoma, rhabdomyosarcomas, teratocarcinomas, and colon carcinomas. IAP Elements,Intracisternal A-Particle Elements,Intracisternal A-Particle Genes,Gene, Intracisternal A Particle,A-Particle Element, Intracisternal,A-Particle Elements, Intracisternal,A-Particle Gene, Intracisternal,A-Particle Genes, Intracisternal,Element, IAP,Element, Intracisternal A-Particle,Elements, IAP,Elements, Intracisternal A-Particle,Gene, Intracisternal A-Particle,Genes, Intracisternal A Particle,IAP Element,Intracisternal A Particle Elements,Intracisternal A Particle Genes,Intracisternal A-Particle Element,Intracisternal A-Particle Gene
D007942 Leukemia, Experimental Leukemia induced experimentally in animals by exposure to leukemogenic agents, such as VIRUSES; RADIATION; or by TRANSPLANTATION of leukemic tissues. Experimental Leukemia,Experimental Leukemias,Leukemia Model, Animal,Leukemias, Experimental,Animal Leukemia Model,Animal Leukemia Models,Leukemia Models, Animal
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D000011 Abelson murine leukemia virus A replication-defective strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) capable of transforming lymphoid cells and producing a rapidly progressing lymphoid leukemia after superinfection with FRIEND MURINE LEUKEMIA VIRUS; MOLONEY MURINE LEUKEMIA VIRUS; or RAUSCHER VIRUS. Abelson Leukemia Virus,Leukemia Virus, Abelson,Virus, Abelson Leukemia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA

Related Publications

K B Leslie, and F Lee, and J W Schrader
November 1990, Science (New York, N.Y.),
K B Leslie, and F Lee, and J W Schrader
January 1989, Progress in nucleic acid research and molecular biology,
K B Leslie, and F Lee, and J W Schrader
September 1980, Cell,
K B Leslie, and F Lee, and J W Schrader
January 1984, Journal of cellular physiology. Supplement,
K B Leslie, and F Lee, and J W Schrader
November 2005, Microscopy research and technique,
K B Leslie, and F Lee, and J W Schrader
May 1981, Journal of virology,
K B Leslie, and F Lee, and J W Schrader
June 1972, Blood,
K B Leslie, and F Lee, and J W Schrader
July 1978, Journal of virology,
Copied contents to your clipboard!