Tissue-specific transcription initiation and effects of growth hormone (GH) deficiency on the regulation of mouse and rat GH-releasing hormone gene in hypothalamus and placenta. 1991

M Mizobuchi, and M A Frohman, and T R Downs, and L A Frohman
Department of Internal Medicine, University of Cincinnati College of Medicine, Ohio 45267.

Hypothalamic GRH gene expression has been shown to be negatively regulated by GH in both rat and mouse. The recent reports of different 5' untranslated sequences in mouse GRH cDNA from hypothalamus and placenta have raised the possibility of tissue-specific regulation of the GRH gene. To provide support for this possibility, we have studied rodent models with GH deficiency due to genetic defects in the pituitary. Complementary DNA probes for the hypothalamic and placental 5' regions were used to determine the tissue specificity of each mRNA. Although the hypothalamic form of GRH mRNA was detected in placenta, it constituted less than 0.7% of total placental GRH mRNA. A placental 5' probe (based on the previously reported sequence) hybridized only with a larger mRNA species and was not tissue specific, indicating that it was not related to GRH and was derived possibly from a cloning artifact. The correct 5' sequence of mouse placental GRH cDNA was determined and shown to be distinct from both that previously reported and the hypothalamic sequence. Although the placental form of GRH mRNA was detected in hypothalamus using the polymerase chain reaction, its levels were undetectable by Northern blotting. The 5' end of rat placental GRH cDNA was similarly sequenced and shown to exhibit no homology with the rat 5' hypothalamic sequence, but a high degree of homology with the corresponding mouse placental sequence. In GH-deficient dwarf (dw/dw) rats, hypothalamic GRH mRNA levels were significantly increased above control levels in both females and males, and pregnancy did not alter the levels in either (dw) or control rats.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

M Mizobuchi, and M A Frohman, and T R Downs, and L A Frohman
March 1988, Molecular endocrinology (Baltimore, Md.),
M Mizobuchi, and M A Frohman, and T R Downs, and L A Frohman
January 1990, The Journal of clinical endocrinology and metabolism,
M Mizobuchi, and M A Frohman, and T R Downs, and L A Frohman
March 1990, Molecular endocrinology (Baltimore, Md.),
M Mizobuchi, and M A Frohman, and T R Downs, and L A Frohman
January 1995, Recent progress in hormone research,
M Mizobuchi, and M A Frohman, and T R Downs, and L A Frohman
August 1997, Endocrinology,
M Mizobuchi, and M A Frohman, and T R Downs, and L A Frohman
September 1985, The Journal of clinical endocrinology and metabolism,
M Mizobuchi, and M A Frohman, and T R Downs, and L A Frohman
December 1987, Experimental and clinical endocrinology,
M Mizobuchi, and M A Frohman, and T R Downs, and L A Frohman
December 1992, Endocrinology,
Copied contents to your clipboard!