Hydroxylation of (Pro-Pro-Gly)5 and (Pro-Pro-Gly)10 by prolyl hydroxylase. Evidence for an asymmetric active site in the enzyme. 1977

R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop

Previous studies with 14C-labeled synthetic peptides demonstrated that prolyl hydroxylase, which synthesizes the hydroxyproline in collagen, preferentially hydroxylates the fourth triplet from the NH-terminal end of the peptide (Pro-Pro-Gly)5. In the experiments reported here, the prolyl hydroxylase reaction was investigated further by preparing chemically modified derivatives of (Pro-Pro-Gly)5 and by synthesizing 14C-labeled preparations of (Pro-Pro-Gly)10. Essentially, the same kcat value was found for the hydroxylation of (Pro-Pro-Gly)5, N-acetyl-(Pro-Pro-Gly)5, (Pro-Pro-Gly)5 methyl ester, (Pro-Pro-Gly)10, and for larger polypeptide substrates of the enzyme. It appeared therefore that preferential hydroxylation of specific triplets in peptides of the structure (Pro-Pro-Gly)n cannot be explained by differences in the kinetic constants for individual triplets. Hydroxylation of 14C-labeled preparations of (Pro-Pro-Gly)10 demonstrated that the ninth triplet was preferentially hydroxylated over any other triplet. The results were best explained by the hypothesis that prolyl hydroxylase has an asymmetric active site in which binding subsites are located adjacent to but not symmetrical with the catalytic subsite.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011393 Procollagen-Proline Dioxygenase A mixed-function oxygenase that catalyzes the hydroxylation of a prolyl-glycyl containing peptide, usually in PROTOCOLLAGEN, to a hydroxyprolylglycyl-containing-peptide. The enzyme utilizes molecular OXYGEN with a concomitant oxidative decarboxylation of 2-oxoglutarate to SUCCINATE. The enzyme occurs as a tetramer of two alpha and two beta subunits. The beta subunit of procollagen-proline dioxygenase is identical to the enzyme PROTEIN DISULFIDE-ISOMERASES. Protocollagen Prolyl Hydroxylase,Procollagen Prolyl 4-Hydroxylase,4-Hydroxylase, Procollagen Prolyl,Dioxygenase, Procollagen-Proline,Hydroxylase, Protocollagen Prolyl,Procollagen Proline Dioxygenase,Procollagen Prolyl 4 Hydroxylase,Prolyl 4-Hydroxylase, Procollagen,Prolyl Hydroxylase, Protocollagen
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop
December 1971, Biochemical and biophysical research communications,
R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop
September 1978, The Journal of biological chemistry,
R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop
September 1974, The Journal of biological chemistry,
R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop
March 1989, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop
May 1971, Archives of biochemistry and biophysics,
R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop
November 1985, Biochemistry,
R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop
April 1978, The Alabama journal of medical sciences,
R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop
August 1973, Biochemistry,
R A Berg, and Y Kishida, and S Sakakibara, and D J Prockop
August 1967, Archives of biochemistry and biophysics,
Copied contents to your clipboard!