Thermal behavior of human plasma high density lipoprotein. 1977

A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley

Human plasma low density lipoprotein displays a reversible thermal transition between 20 and 40 degrees C, due to a phase transition of its core cholesterol ester from a smectic to a more liquid-like state. To determine if the cholesterol of high density lipoprotein (HDL) displays similar thermal behavior, the human lipoprotein and its extracted lipid have been examined by differential scanning calorimetry, low angle X-ray scattering and polarizing microscopy. Neither HDL2**(d 1.063--1.125--1.21 g/ml) nor HDL3(d1.125--1.21g/ml) show thermal transitions between O and 60 degrees C. By contrast cholesterol ester isolated from HDL and mixtures of cholesterol oleate and linoleate show reversible liquid crystalline transitions between 20 and 40 degreesC. X-ray scattering studies of HDL2 and HDL3 performed at 10 degreesC show no scattering fringes attributable to a smectic phase of cholesterol ester. When HDL is heated to temperatures above 60 degreesC a broad, double-peaked endotherm is observed. The first component (peak temperature=71 degreesC) corresponds to a selective release of apoprotein A-1 from the lipoprotein, and the second component (peak temperature=90 degreesC) to a more generalized disruption of lipoprotein structure with release of cholesterol ester and apoprotein A-2. Following the thermal disruption of HDL, reversible liquid crystalline transitions of cholesterol ester can be seen by differential scanning calorimetry and polarizing microscopy, showing the presence of large domains of cholesterol ester. The absence of cholesterol ester transitions in intact HDL may indicate an interaction of cholesterol ester molecules with the protein-phospholipid surface of HDL that prevents the formation of an organized lipid phase. The high temperature behavior of HDL indicates that apoprotein A-1 is less important than apoprotein A-2 in maintaining the HDL apolar lipids in the form of a stable miroemulsion.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D005215 Fasting Abstaining from FOOD. Hunger Strike,Hunger Strikes,Strike, Hunger,Strikes, Hunger
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley
September 2016, Biochimica et biophysica acta,
A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley
April 2006, Biochemistry,
A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley
December 1972, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley
March 1977, Biochemical and biophysical research communications,
A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley
July 1980, Journal of lipid research,
A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley
February 1993, The Journal of biological chemistry,
A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley
January 1974, Scandinavian journal of clinical and laboratory investigation. Supplementum,
A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley
June 1976, Metabolism: clinical and experimental,
A R Tall, and R J Deckelbaum, and D M Small, and G G Shipley
June 1985, The Journal of clinical investigation,
Copied contents to your clipboard!