Monte Carlo simulation of an x-ray volume imaging cone beam CT unit. 2009

Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
Department of Medical Physics, Velindre Cancer Centre, Cardiff CF14 2TL, United Kingdom. emiliano.spezi@velindre-tr.wales.nhs.uk

In this work the authors characterized the radiation field produced by a kilovolt cone beam computed tomography (CBCT) unit integrated in the Elekta Synergy linear accelerator. The x-ray volume imaging (XVI) radiation unit was modeled in detail using the BEAMNRC Monte Carlo (MC) code system. The simulations of eight collimator cassettes and the neutral filter F0 were successfully carried out. MC calculations from the EGSNRC code DOSXYZNRC were benchmarked against measurements in water. A large set of depth dose and lateral profiles was acquired with the ionization chamber in water, with the x-ray tube in a stationary position, and with the beam energy set to 120 kV. Measurements for all the available collimator cassettes were compared with calculations, showing very good agreement (< 2% in most cases). Furthermore, half value layer measurements were carried out and used to validate the MC model of the XVI unit. In this case dose calculations were performed with the EGSNRC code cavity and these showed excellent agreement. In this manuscript the authors also report on the optimization work of the relevant parameters that influenced the development of the MC model. The dosimetric part of this work was very useful in characterizing the XVI radiation output for the energy of interest. The detailed simulation part of the work is the first step toward an accurate MC based assessment of the dose delivered to patients during routine CBCT scans for image and dose guided radiotherapy.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D012062 Relative Biological Effectiveness The ratio of radiation dosages required to produce identical change based on a formula comparing other types of radiation with that of gamma or roentgen rays. Biological Effectiveness, Relative,Effectiveness, Biologic Relative,Effectiveness, Biological Relative,Relative Biologic Effectiveness,Biologic Effectiveness, Relative,Biologic Relative Effectiveness,Biological Relative Effectiveness,Effectiveness, Relative Biologic,Effectiveness, Relative Biological,Relative Effectiveness, Biologic
D001822 Body Burden The total amount of a chemical, metal or radioactive substance present at any time after absorption in the body of man or animal. Body Burdens,Burden, Body,Burdens, Body
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D012542 Scattering, Radiation The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Radiation Scattering,Radiation Scatterings,Scatterings, Radiation
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model

Related Publications

Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
March 2009, Medical physics,
Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
March 2009, Radiation research,
Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
December 2019, Radiation protection dosimetry,
Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
October 2005, Physics in medicine and biology,
Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
April 2015, Nihon Hoshasen Gijutsu Gakkai zasshi,
Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
January 2020, Journal of synchrotron radiation,
Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
March 2009, Medical physics,
Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
May 2024, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
January 2016, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB),
Emiliano Spezi, and Patrick Downes, and Emil Radu, and Richard Jarvis
January 1988, Medical physics,
Copied contents to your clipboard!