Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae. 1991

H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.

DNA polymerase II purified from Saccharomyces cerevisiae contains polypeptides with apparent molecular masses of greater than 200, 80, 34, 30 and 29 kDa, the two largest of which (subunits A and B) are encoded by the essential genes POL2 and DPB2. By probing a lambda gt11 expression library of yeast DNA with antiserum against DNA polymerase II, we isolated a single gene, DPB3, that encodes both the 34- and 30-kDa polypeptides (subunit C and C'). The nucleotide sequence of DPB3 contained an open reading frame encoding a 23-kDa protein, significantly smaller than the observed molecular masses, 34- or 30-kDa, which might represent post-translationally modified forms of the DPB3 product. The predicted amino acid sequence contained a possible NTP-binding motif and a glutamate-rich region. NTP-binding motif and a glutamate-rich region. A dpb3 deletion mutant (dpb3 delta) was viable and yielded a DNA polymerase II lacking the 34- and 30-kDa polypeptides. dpb3 delta strains exhibited an increased spontaneous mutation rate, suggesting that the DPB3 product is required to maintain fidelity of chromosomal replication. Since a fifth, 29-kDa polypeptide was present in DNA polymerase II preparations from wild-type cell extracts throughout purification, the subunit composition appears to be A, B, C (or C and C') and D. The 5' nontranscribed region of DPB3 contained the MulI-related sequence ACGCGA, while the 0.9-kb DPB3 transcript accumulated periodically during the cell cycle and peaked at the G1/S boundary. The level of DPB3 transcript thus appears to be under the same cell cycle control as those of POL2, DPB2 and other DNA replication genes. DPB3 was mapped to chromosome II, 30 cM distal to his7.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
June 1989, The EMBO journal,
H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
January 1993, Progress in nucleic acid research and molecular biology,
H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
January 2015, Bioengineered,
H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
July 1994, The Journal of biological chemistry,
H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
February 1992, The Journal of biological chemistry,
H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
January 1992, Nucleic acids research,
H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
July 1988, Genetics,
H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
October 1992, Proceedings of the National Academy of Sciences of the United States of America,
H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
April 2003, Nucleic acids research,
H Araki, and R K Hamatake, and A Morrison, and A L Johnson, and L H Johnston, and A Sugino
April 1989, The Journal of biological chemistry,
Copied contents to your clipboard!