How insulin regulates glucose transport in adipocytes. 2009

Joseph M Muretta, and Cynthia Corley Mastick
Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Insulin stimulates glucose storage and metabolism by the tissues of the body, predominantly liver, muscle and fat. Storage in muscle and fat is controlled to a large extent by the rate of facilitative glucose transport across the plasma membrane of the muscle and fat cells. Insulin controls this transport. Exactly how remains debated. Work presented in this review focuses on the pathways responsible for the regulation of glucose transport by insulin. We present some historical work to show how the prevailing model for regulation of glucose transport by insulin was originally developed, then some more recent data challenging this model. We finish describing a unifying model for the control of glucose transport, and some very recent data illustrating potential molecular machinery underlying this regulation. This review is meant to give an overview of our current understanding of the regulation of glucose transport through the regulation of the trafficking of Glut4, highlighting important questions that remain to be answered. A more detailed treatment of specific aspects of this pathway can be found in several excellent recent reviews (Brozinick et al., 2007 Hou and Pessin, 2007; Huang and Czech, 2007;Larance et al., 2008 Sakamoto and Holman, 2008; Watson and Pessin, 2007; Zaid et al., 2008)One of the main objectives of this review is to discuss the results of the experiments measuring the kinetics of Glut4 movement between subcellular compartments in the context of our emerging model of the Glut4 trafficking pathway.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D017667 Adipocytes Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals. Fat Cells,Lipocytes,Adipocyte,Cell, Fat,Cells, Fat,Fat Cell,Lipocyte
D051275 Glucose Transporter Type 4 A glucose transport protein found in mature MUSCLE CELLS and ADIPOCYTES. It promotes transport of glucose from the BLOOD into target TISSUES. The inactive form of the protein is localized in CYTOPLASMIC VESICLES. In response to INSULIN, it is translocated to the PLASMA MEMBRANE where it facilitates glucose uptake. GLUT-4 Protein,GLUT4 Protein,Insulin-Responsive Glucose Transporter,SLC2A4 Protein,Solute Carrier Family 2, Facilitated Glucose Transporter, Member 4 Protein,GLUT 4 Protein,Glucose Transporter, Insulin-Responsive,Insulin Responsive Glucose Transporter
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Joseph M Muretta, and Cynthia Corley Mastick
June 1979, The American journal of physiology,
Joseph M Muretta, and Cynthia Corley Mastick
October 1998, FEBS letters,
Joseph M Muretta, and Cynthia Corley Mastick
January 1985, International journal of obesity,
Joseph M Muretta, and Cynthia Corley Mastick
January 2009, Biochemical and biophysical research communications,
Joseph M Muretta, and Cynthia Corley Mastick
November 2005, The Journal of biological chemistry,
Joseph M Muretta, and Cynthia Corley Mastick
March 1992, Diabetes research and clinical practice,
Joseph M Muretta, and Cynthia Corley Mastick
January 2002, Journal of cellular biochemistry,
Joseph M Muretta, and Cynthia Corley Mastick
January 1988, FEBS letters,
Joseph M Muretta, and Cynthia Corley Mastick
January 1997, The Japanese journal of physiology,
Joseph M Muretta, and Cynthia Corley Mastick
August 2006, Metabolism: clinical and experimental,
Copied contents to your clipboard!