Phosphorylation of IRS proteins Yin-Yang regulation of insulin signaling. 2009

Xiao Jian Sun, and Feng Liu
Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA.

Growing evidence reveals that insulin signal pathway is not static, but is rather a dynamic, flexible, and fed in by negative (Yin) and positive (Yang) regulation in response to environmental changes. Normal insulin response reflects the balance between Yin and Yang regulation acting upon insulin signaling pathway. Conceivably, imbalance between the Yin and Yang results in abnormal insulin sensitivity such as insulin resistance. IRS-proteins are insulin receptor substrates that mediate insulin signaling via multiple tyrosyl phosphorylations. However, they are also substrates for many serine/threonine kinases downstream of other signaling network and become serine phosphorylated in response to various conditions such as inflammation, stress and over nutrients. The serine phosphorylation of IRS-proteins alters the capacities of IRS-proteins to be phosphorylated on tyrosyl, therefore, able to mediate insulin signaling. The unique structure of IRS-proteins render them idea molecules to fulfill the task to sense the environmental cues and integrate them into insulin sensitivity through serine/threonine phosphorylation. This review intends to summarize the role of IRS-proteins in insulin signaling with focuses on the role of Yin and Yang regulation of insulin signaling pathway. Understanding the dynamic of these complicated regulation net work not only provide us a complete picture of what happens in the normal conditions, but also pathaphysiological conditions such as obesity and insulin resistance.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016709 Yin-Yang In Chinese philosophy and religion, two principles, one negative, dark, and feminine (yin) and one positive, bright, and masculine (yang), from whose interaction all things are produced and all things are dissolved. As a concept the two polar elements referred originally to the shady and sunny sides of a valley or a hill but it developed into the relationship of any contrasting pair: those specified above (female-male, etc.) as well as cold-hot, wet-dry, weak-strong, etc. It is not a distinct system of thought by itself but permeates Chinese life and thought. A balance of yin and yang is essential to health. A deficiency of either principle can manifest as disease. (Encyclopedia Americana) Yin Yang
D055504 Insulin Receptor Substrate Proteins A structurally-related group of signaling proteins that are phosphorylated by the INSULIN RECEPTOR PROTEIN-TYROSINE KINASE. The proteins share an N-terminal PLECKSTRIN HOMOLOGY DOMAIN, a phosphotyrosine-binding domain that interacts with the phosphorylated INSULIN RECEPTOR, and a C-terminal TYROSINE-rich domain. Upon tyrosine phosphorylation, insulin receptor substrate proteins interact with specific SH2 DOMAIN containing proteins that are involved in insulin receptor signaling. IRS Signaling Adaptor Proteins,Insulin Receptor Substrate-1,Insulin Receptor Substrate-1 Protein,Insulin Receptor Substrate-2,Insulin Receptor Substrate-2 Protein,Insulin Receptor Substrate-3,Insulin Receptor Substrate-3 Protein,Insulin Receptor Substrate-4,Insulin Receptor Substrate-4 Protein,Insulin Receptor Substrate 1,Insulin Receptor Substrate 1 Protein,Insulin Receptor Substrate 2,Insulin Receptor Substrate 2 Protein,Insulin Receptor Substrate 3,Insulin Receptor Substrate 3 Protein,Insulin Receptor Substrate 4,Insulin Receptor Substrate 4 Protein

Related Publications

Xiao Jian Sun, and Feng Liu
October 1993, Science (New York, N.Y.),
Xiao Jian Sun, and Feng Liu
September 2015, The Journal of biological chemistry,
Xiao Jian Sun, and Feng Liu
April 2009, American journal of physiology. Endocrinology and metabolism,
Xiao Jian Sun, and Feng Liu
March 2009, Proceedings of the National Academy of Sciences of the United States of America,
Xiao Jian Sun, and Feng Liu
November 2009, The Journal of biological chemistry,
Xiao Jian Sun, and Feng Liu
June 2016, Journal of molecular cell biology,
Xiao Jian Sun, and Feng Liu
July 2004, Trends in immunology,
Copied contents to your clipboard!