Fibroin-derived peptides stimulate glucose transport in normal and insulin-resistant 3T3-L1 adipocytes. 2009

Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
School of Life Science, Handong Global University, Kyungbuk, Korea.

Fibroin, the protein of silk, and hydrolyzed fibroin have recently been described to enhance insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. Here, we report that a series of synthetic peptides derived from the fibroin sequence have enhancing effects on glucose transport in normal and insulin-resistant 3T3-L1 cells. We observed that, among several enzymatic hydrolysates of fibroin, the chymotryptic and peptic hydrolysates were significantly more effective than others in augmenting insulin-stimulated glucose uptake in both cells. We synthesized several peptides of repetitive sequences in fibroin. Treatment with synthesized hexapeptides enhanced insulin-stimulated glucose uptake more than tri-, tetra- or pentapeptides. Among those, the effect of Gly-Ala-Gly-Ala-Gly-Tyr (GAGAGY) was most robust, and especially its activity of blocking off the chronic-insulin-induced loss of insulin-stimulated uptake was remarkable. Data reveal that the residues of tyrosine situated at the ends of the peptides play a critical role for exerting their activities. We demonstrate that the insulin-sensitizing effect of GAGAGY is due to enhancement of phosphoinositide 3-kinase (PI 3-K) signaling pathway. The GAGAGY-induced insulin-stimulated glucose uptake was sensitive to inhibition of PI 3-K by wortmannin. Phosphorylation of Akt was also elevated in GAGAGY-treated cells. Furthermore, GAGAGY significantly increased insulin-induced glucose transporter 4 (GLUT4) translocation without affecting the synthesis of GLUT4. Our findings suggest that fibroin-derived peptides such as GAGAGY could be considered as novel insulin-sensitizing agents with an activity of blocking the development of insulin resistance.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D005349 Fibroins Fibrous proteins secreted by INSECTS and SPIDERS. Generally, the term refers to silkworm fibroin secreted by the silk gland cells of SILKWORMS, Bombyx mori. Spider fibroins are called spidroins or dragline silk fibroins. Fibroin,Spidroin,Dragline Silk Fibroins,Fibroins, Spider,Silk Fibroin,Silk Fibroins,Spidroins,Fibroin, Silk,Fibroins, Dragline Silk,Fibroins, Silk,Spider Fibroins
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017667 Adipocytes Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals. Fat Cells,Lipocytes,Adipocyte,Cell, Fat,Cells, Fat,Fat Cell,Lipocyte

Related Publications

Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
December 2004, The Journal of nutrition,
Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
January 2002, Journal of cellular biochemistry,
Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
January 1997, The Japanese journal of physiology,
Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
August 1994, The Journal of biological chemistry,
Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
September 2003, Life sciences,
Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
June 1999, Endocrine journal,
Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
March 1996, Biochemical and biophysical research communications,
Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
April 2024, Journal of natural products,
Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
July 1996, Molecular biology of the cell,
Eun-Do Kim, and Tsenguun Bayaraa, and Eun-Jung Shin, and Chang-Kee Hyun
December 2000, Endocrinology,
Copied contents to your clipboard!