Affinity maturation by phage display. 2009

Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
Institute of Biochemistry and Biotechnology, Technical University Braunschweig, Braunschweig, Germany.

Antibodies are indispensable tools for research, diagnostics, and therapy. However, sometimes antibodies with the most favourable specificity profile lack sufficient affinity for a desired application. Here, we describe a method to increase the affinity of recombinant scFv antibody fragments based on random mutagenesis and phage display under stringent conditions. Random mutations are inserted by performing several rounds of error-prone PCR. After construction of a mutated antibody gene library, affinity selection is performed by panning with washing conditions optimized for off-rate-dependent selection. Alternatively, panning in solution with competition can be used to enrich binders with improved binding properties.

UI MeSH Term Description Entries
D008967 Molecular Biology A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules. Biochemical Genetics,Biology, Molecular,Genetics, Biochemical,Genetics, Molecular,Molecular Genetics,Biochemical Genetic,Genetic, Biochemical,Genetic, Molecular,Molecular Genetic
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000915 Antibody Affinity A measure of the binding strength between antibody and a simple hapten or antigen determinant. It depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. It includes the concept of "avidity," which refers to the strength of the antigen-antibody bond after formation of reversible complexes. Affinity, Antibody,Antibody Avidity,Avidity, Antibody,Affinities, Antibody,Antibody Affinities,Antibody Avidities,Avidities, Antibody
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D017186 Titrimetry The determination of the concentration of a given component in solution (the analyte) by addition of a liquid reagent of known strength (the titrant) until an equivalence point is reached (when the reactants are present in stoichiometric proportions). Often an indicator is added to make the equivalence point visible (e.g., a change in color).

Related Publications

Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
December 1993, Journal of molecular biology,
Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
January 2012, Methods in molecular biology (Clifton, N.J.),
Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
June 2006, Journal of immunological methods,
Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
February 2022, Protein engineering, design & selection : PEDS,
Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
December 2007, Journal of microbiology (Seoul, Korea),
Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
August 2014, Molecular imaging and biology,
Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
March 2005, Journal of molecular biology,
Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
January 2000, Methods in molecular biology (Clifton, N.J.),
Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
January 1997, Human antibodies,
Holger Thie, and Bernd Voedisch, and Stefan Dübel, and Michael Hust, and Thomas Schirrmann
October 2023, Global challenges (Hoboken, NJ),
Copied contents to your clipboard!