TGF-beta1 induces human bronchial epithelial cell-to-mesenchymal transition in vitro. 2009

Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
Department of Respiratory and Intensive Care Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China. zhangmincc@163.com

The subepithelial fibrosis component of airway remodeling in asthma is mediated through induction of transforming growth factor-beta1 (TGF-beta1) expression with consequent activation of myofibroblasts to produce extracellular matrix proteins. The number of myofibroblasts is increased in the asthmatic airway and is significantly correlated with the thickness of lamina reticularis. However, much is still unknown regarding the origin of bronchial myofibroblasts. Emerging evidence suggests that myofibroblasts can derive from epithelial cells by an epithelial-to-mesenchymal transition (EMT). In this study we investigated whether TGF-beta1 could induce bronchial epithelial EMT in the human bronchial epithelial cell. Cultured human bronchial epithelial cells, 16HBE-14o, were stimulated with 10 ng/ml TGF-beta1. Morphologic changes were observed and stress fiber by actin reorganization was detected by indirect immunostaining. The expression of alpha-SMA (alpha-smooth muscle actin) and the epithelial cell marker E-cadherin were detected in those 16HBE-14o cells after TGF-beta1 stimulation for 72 h, using immunostaining and RT-PCR. The contents of collagen I were determined by radioimmunoassay, and the levels of endogenous TGF-beta1 were measured with ELISA. Human bronchial epithelial cells stimulated with TGF-beta1 were converted from a "cobblestone" epithelial structure into an elongated fibroblast-like shape. Incubation of human bronchial epithelial cells with TGF-beta1 induced de novo expression of alpha-SMA, increased formation of stress fiber by F-actin reorganization, and loss of epithelial marker E-cadherin. Moreover, a significant increase in the levels of collagen I and endogenous TGF-beta1 released from bronchial epithelial cells stimulated with TGF-beta1 were observed. These results suggested that human bronchial epithelial cells, under stimulation of TGF-beta1, underwent transdifferentiation into myofibroblasts.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
November 2004, Life sciences,
Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
March 2014, Life sciences,
Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
January 2013, Cell transplantation,
Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
August 2020, Bioscience reports,
Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
April 2015, Respiratory research,
Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
March 2010, Biochemical and biophysical research communications,
Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
January 2009, Journal of nephrology,
Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
October 2009, Respiratory research,
Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
May 2009, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
Min Zhang, and Zhi Zhang, and Hai-Yan Pan, and De-Xi Wang, and Zhe-Tong Deng, and Xiao-Ling Ye
January 2011, International archives of allergy and immunology,
Copied contents to your clipboard!