The symmetric title reaction CH(3) + CH(4) --> CH(4) + CH(3) is studied using quantum scattering theory. Quantum dynamics calculations are performed in hyperspherical coordinates with a two-dimensional effective potential energy surface consisting of an analytical 18-parameter double Morse function fit to ab initio data at the CCSD(T)/cc-pVTZ//MP2/cc-pVTZ level of theory. Spectator modes are treated adiabatically by inclusion of projected zero-point energy corrections in the effective potential. The close-coupled equations are solved via R-matrix propagation. Energy and J-shifted thermal rate constants are compared to experimental data and highlight the importance of quantum tunneling. Oscillating reactivity and metastable bound state resonances are observed in the cumulative and state-to-state reaction probabilities. State-to-state differential and initial state-selected integral cross sections are presented and discussed. Primary and secondary kinetic isotope effects for two symmetric deuterated variants of the title reaction are also presented.
| UI | MeSH Term | Description | Entries |
|---|