Mechanistic study of the manganese-catalyzed [2 + 2 + 2] annulation of 1,3-dicarbonyl compounds and terminal alkynes. 2009

Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.

The manganese-catalyzed dehydrative [2 + 2 + 2] annulation reaction of a 1,3-dicarbonyl compound and a terminal alkyne provides an efficient and regioselective synthesis of a substituted benzene derivative, highlighted by the exclusive formation of a p-terphenyl derivative from an aryl acetylene. The mechanism and the origin of the regioselectivity of the reaction were explored by experiments and density functional theory (DFT) calculations. Experimental data revealed the cis stereochemistry of a cyclohexadienol precursor to the benzene product and suggested that two reaction pathways may operate competitively sequential carbometalation reactions of a manganese enolate and formation of a manganacyclopentadiene intermediate. The DFT study supported the first possibility, namely that the reaction involves three steps: (1) addition of a manganese enolate of a 1,3-dicarbonyl compound to a terminal alkyne to give a vinylmanganese complex, (2) insertion of a second alkyne into the vinyl-Mn bond to give a dienylmanganese complex, and (3) intramolecular nucleophilic addition of the dienylmanganese to the carbonyl group. This mechanism is consistent with the experimental facts such as the perfect regioselectivity of the reaction of an aryl acetylene, the moderate regioselectivity of the reaction of an alkyl acetylene, and the stereochemistry of the annulation product. An alternative mechanism involving a manganacyclopentadiene intermediate failed to account for the experimental regioselectivity, although it may be occurring as a very minor competitive pathway.

UI MeSH Term Description Entries

Related Publications

Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
January 2010, The Journal of organic chemistry,
Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
January 2016, Organic letters,
Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
April 2007, Journal of the American Chemical Society,
Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
July 2008, Organic letters,
Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
May 2005, The Journal of organic chemistry,
Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
September 2020, RSC advances,
Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
June 2008, Journal of the American Chemical Society,
Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
January 2020, Organic letters,
Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
May 2005, Organic letters,
Naohiko Yoshikai, and Song-Lin Zhang, and Ken-ichi Yamagata, and Hayato Tsuji, and Eiichi Nakamura
September 2009, Chemistry, an Asian journal,
Copied contents to your clipboard!