Transcriptional response to mitochondrial NADH kinase deficiency in Saccharomyces cerevisiae. 2009

Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.

Yeast cells lacking the mitochondrial NADH kinase encoded by POS5 display increased sensitivity to hydrogen peroxide, a slow-growth phenotype, reduced mitochondrial function and increased levels of mitochondrial protein oxidation and mtDNA mutations. Here we examined gene expression in pos5Delta cells, comparing these data to those from cells containing deletions of superoxide dismutase-encoding genes SOD1 or SOD2. Surprisingly, stress-response genes were down-regulated in pos5Delta, sod1Delta and sod2Delta cells, implying that cells infer stress levels from mitochondrial activity rather than sensing reactive oxygen species directly. Additionally, pos5Delta, but not sod1 or sod2, cells displayed an anaerobic expression profile, indicating a defect in oxygen sensing that is specific to pos5, and is not a general stress-response. Finally, the pos5Delta expression profile is quite similar to the hap1Delta expression profile previously reported, which may indicate a shared mechanism.

UI MeSH Term Description Entries
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000072105 Superoxide Dismutase-1 A superoxide dismutase (SOD1) that requires copper and zinc ions for its activity to destroy SUPEROXIDE FREE RADICALS within the CYTOPLASM. Mutations in the SOD1 gene are associated with AMYOTROPHIC LATERAL SCLEROSIS-1. Cu-Zn Superoxide Dismutase,Cuprozinc Superoxide Dismutase,SOD-1 Protein,SOD1 Protein,Superoxide Dismutase 1,Cu Zn Superoxide Dismutase,SOD 1 Protein,Superoxide Dismutase, Cu-Zn,Superoxide Dismutase, Cuprozinc
D000935 Antifungal Agents Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D017353 Gene Deletion A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. Deletion, Gene,Deletions, Gene,Gene Deletions
D017853 Phosphotransferases (Alcohol Group Acceptor) A group of enzymes that transfers a phosphate group onto an alcohol group acceptor. EC 2.7.1.

Related Publications

Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
April 2006, Mitochondrion,
Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
April 1989, Journal of biochemistry,
Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
May 2003, The EMBO journal,
Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
August 2003, Eukaryotic cell,
Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
May 2006, Yeast (Chichester, England),
Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
December 2010, The Journal of biological chemistry,
Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
November 2014, BMC genomics,
Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
May 2010, The Journal of biological chemistry,
Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
December 2011, Acta biochimica et biophysica Sinica,
Gregory R Stuart, and Margaret M Humble, and Micheline K Strand, and William C Copeland
March 2004, Molecular biology of the cell,
Copied contents to your clipboard!