Distinct developmental mechanisms underlie the evolutionary diversification of Drosophila sex combs. 2009

Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
Department of Evolution and Ecology, University of California-Davis, One Shields Ave., Davis, CA 95616, USA.

Similar selective pressures can lead to independent origin of similar morphological structures in multiple evolutionary lineages. Developmental mechanisms underlying convergent evolution remain poorly understood. In this report, we show that similar sex comb morphology in closely related Drosophila species is produced by different cellular mechanisms. The sex comb is a recently evolved, male-specific array of modified bristles derived from transverse bristle rows found on the first thoracic legs in both sexes. "Longitudinal" sex combs oriented along the proximo-distal leg axis evolved independently in several Drosophila lineages. We show that in some of these lineages, sex combs originate as one or several transverse bristle rows that subsequently rotate 90 degrees and align to form a single longitudinal row. In other species, bristle cells that make up the sex combs arise in their final longitudinal orientation. Thus, sex combs can develop through either sex-specific patterning of bristle precursor cells or male-specific morphogenesis of sexually monomorphic precursors. Surprisingly, the two mechanisms produce nearly identical morphology in some species. Phylogenetic analysis shows that each of these mechanisms has probably evolved repeatedly in different Drosophila lineages, suggesting that selection can recruit different cellular processes to produce similar functional solutions.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000825 Animal Structures Organs and other anatomical structures of non-human vertebrate and invertebrate animals. Animal Organs,Animal Organ,Animal Structure,Organ, Animal,Organs, Animal,Structure, Animal,Structures, Animal
D012399 Rotation Motion of an object in which either one or more points on a line are fixed. It is also the motion of a particle about a fixed point. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Clinorotation,Clinorotations,Rotations

Related Publications

Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
January 2023, microPublication biology,
Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
April 2010, Journal of molecular evolution,
Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
January 2011, Evolution & development,
Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
February 1965, Developmental biology,
Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
January 1964, UCRL [reports]. U.S. Atomic Energy Commission,
Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
November 1997, Molecular and cellular biology,
Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
July 2015, Development (Cambridge, England),
Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
December 2006, FEBS letters,
Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
April 1998, Annals of the New York Academy of Sciences,
Kohtaro Tanaka, and Olga Barmina, and Artyom Kopp
May 1988, Developmental biology,
Copied contents to your clipboard!