Resveratrol inhibits fatty acid and triacylglycerol synthesis in rat hepatocytes. 2009

G V Gnoni, and G Paglialonga
University of Salento, Lecce, Italy. gabriele.gnoni@unile.it

BACKGROUND The putative role of resveratrol, a polyphenol present in grapes and other plants, in modulating dislypidemia, thus preventing cardiovascular diseases, is generally based on proliferating cell lines and in vivo studies in different pathological conditions. The aim of the present study was to investigate whether resveratrol plays a role on lipid biosynthesis in rat hepatocytes. METHODS The effect of resveratrol on total rate of fatty acid, cholesterol and complex lipid synthesis, assayed by the incorporation of [1-(14)C]acetate into these lipid fractions, was investigated in rat hepatocyte suspensions. Enzyme activities of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) as well as 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA-R), pace-setting steps of de novo fatty acid and cholesterol synthesis, respectively, were in situ measured in digitonin-permeabilized hepatocytes. RESULTS Resveratrol-treated hepatocytes exhibited a short-term (30 min) inhibition (IC(50) approximately 25 microm) of total fatty acid synthesis from [1-(14)C]acetate. Among neosynthesized fatty acids, palmitic acid formation was mainly reduced, thus suggesting that enzymatic step(s) of de novo fatty acid synthesis was affected by resveratrol. In digitonin-permeabilized hepatocytes, only ACC activity was noticeably reduced, while no change in FAS activity was observed. A noticeable resveratrol-induced reduction of label incorporation into triacylglycerols was also detected. Conversely, cholesterol synthesis and HMG-CoA-R activity were unaffected by resveratrol. CONCLUSIONS Results here reported show that in isolated hepatocytes from normal rats a resveratrol-induced short-term inhibition of fatty acid and triacylglycerol synthesis occurs. This finding may represent a potential mechanism contributing to the reported hypolipidemic effect of resveratrol.

UI MeSH Term Description Entries
D008297 Male Males
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000077185 Resveratrol A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. 3,4',5-Stilbenetriol,3,4',5-Trihydroxystilbene,3,5,4'-Trihydroxystilbene,Resveratrol, (Z)-,Resveratrol-3-sulfate,SRT 501,SRT-501,SRT501,cis-Resveratrol,trans-Resveratrol,trans-Resveratrol-3-O-sulfate,Resveratrol 3 sulfate,cis Resveratrol,trans Resveratrol,trans Resveratrol 3 O sulfate
D000103 Acetyl-CoA Carboxylase A carboxylating enzyme that catalyzes the conversion of ATP, acetyl-CoA, and HCO3- to ADP, orthophosphate, and malonyl-CoA. It is a biotinyl-protein that also catalyzes transcarboxylation. The plant enzyme also carboxylates propanoyl-CoA and butanoyl-CoA (From Enzyme Nomenclature, 1992) EC 6.4.1.2. Acetyl Coenzyme A Carboxylase,Acetyl CoA Carboxylase,Carboxylase, Acetyl-CoA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D013223 Statistics as Topic Works about the science and art of collecting, summarizing, and analyzing data that are subject to random variation. Area Analysis,Estimation Technics,Estimation Techniques,Indirect Estimation Technics,Indirect Estimation Techniques,Multiple Classification Analysis,Service Statistics,Statistical Study,Statistics, Service,Tables and Charts as Topic,Analyses, Area,Analyses, Multiple Classification,Area Analyses,Classification Analyses, Multiple,Classification Analysis, Multiple,Estimation Technic, Indirect,Estimation Technics, Indirect,Estimation Technique,Estimation Technique, Indirect,Estimation Techniques, Indirect,Indirect Estimation Technic,Indirect Estimation Technique,Multiple Classification Analyses,Statistical Studies,Studies, Statistical,Study, Statistical,Technic, Indirect Estimation,Technics, Estimation,Technics, Indirect Estimation,Technique, Estimation,Technique, Indirect Estimation,Techniques, Estimation,Techniques, Indirect Estimation
D013267 Stilbenes Organic compounds that contain 1,2-diphenylethylene as a functional group. Stilbene,Stilbene Derivative,Stilbene Derivatives,Stilbenoid,Stilbenoids,Derivative, Stilbene,Derivatives, Stilbene
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride

Related Publications

G V Gnoni, and G Paglialonga
May 1992, The Biochemical journal,
G V Gnoni, and G Paglialonga
June 2001, Endocrinology,
G V Gnoni, and G Paglialonga
August 1987, Clinical science (London, England : 1979),
Copied contents to your clipboard!