Interplay between adhesion turnover and cytoskeleton dynamics in the control of growth cone migration. 2008

Olivier Thoumine
CNRS UMR 5091, Institut Magendie, Université Bordeaux 2, Bordeaux, France. othoumin@u-bordeaux2.fr

The migration of neuronal growth cones, driving axon extension, is a fascinating process which has been subject of intense investigation over several decades. Many of the key underlying molecules, in particular adhesion proteins at the cell membrane which allow for target recognition and binding, and cytoskeleton filaments and motors which power locomotion have been identified. However, the precise mechanisms by which growth cones coordinate, in time and space, the transmission of forces generated by the cytoskeleton to the turnover of adhesion proteins are still partly unresolved. To get a better grasp at these processes, we put here in relation the turnover rate of ligand/receptor adhesions and the degree of mechanical coupling between cell adhesion receptors and the actin rearward flow. These parameters were obtained recently for N-cadherin and IgCAM based adhesions using ligand-coated microspheres in combination with optical tweezers and photo-bleaching experiments. We show that the speed of growth cone migration requires both a fairly rapid adhesion dynamics and a strong physical connection between adhesive sites and the cytoskeleton.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D020439 Growth Cones Bulbous enlargement of the growing tip of nerve axons and dendrites. They are crucial to neuronal development because of their pathfinding ability and their role in synaptogenesis. Growth Cone

Related Publications

Olivier Thoumine
May 2004, Trends in immunology,
Olivier Thoumine
January 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Olivier Thoumine
January 2015, Cell adhesion & migration,
Olivier Thoumine
December 2011, Molecular and cellular neurosciences,
Olivier Thoumine
September 2020, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!