Gene targeting in mouse embryonic stem cells. 2009

Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
Mouse Cancer Genetics Program, NCI-Frederick, Frederick, MD, USA.

The scientific value of a mouse model with a targeted mutation depends greatly upon how carefully the mutation has been engineered. Until recently, our ability to alter the mouse genome has been limited by both the lack of technologies to conditionally target a locus and by conventional cloning. The "cre/loxP" and "recombineering" technologies have overcome some of these limitations and have greatly enhanced our ability to manipulate the mouse genome in a sophisticated way. However, there are still some practical aspects that need to be considered to successfully target a specific genetic locus. Here, we describe the process to engineer a targeted mutation to generate a mouse model. We include a tutorial using the publicly available informatic tools that can be downloaded for processing the genetic information needed to generate a targeting vector.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D017422 Sequence Analysis, DNA A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis. DNA Sequence Analysis,Sequence Determination, DNA,Analysis, DNA Sequence,DNA Sequence Determination,DNA Sequence Determinations,DNA Sequencing,Determination, DNA Sequence,Determinations, DNA Sequence,Sequence Determinations, DNA,Analyses, DNA Sequence,DNA Sequence Analyses,Sequence Analyses, DNA,Sequencing, DNA
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053595 Embryonic Stem Cells Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells. Stem Cells, Embryonic,Cell, Embryonic Stem,Cells, Embryonic Stem,Embryonic Stem Cell,Stem Cell, Embryonic
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out

Related Publications

Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
January 2003, Methods in molecular biology (Clifton, N.J.),
Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
July 1997, Gene therapy,
Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
May 1991, Molecular and cellular biology,
Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
April 2011, Methods (San Diego, Calif.),
Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
January 1993, Methods in enzymology,
Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
January 1991, Biotechnology (Reading, Mass.),
Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
July 1995, Somatic cell and molecular genetics,
Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
June 2003, BioTechniques,
Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
November 2000, Experimental physiology,
Lino Tessarollo, and Mary Ellen Palko, and Keiko Akagi, and Vincenzo Coppola
January 2023, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!