Triggering-response model for radiation-induced bystander effects. 2009

Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
University of California, Berkeley, Berkeley, California, USA. fakir@math.berkeley.edu

We propose a mechanistic model for radiation cell killing and carcinogenesis-related end points that combines direct and bystander responses. The model describes the bystander component as a sequence of two distinct processes: triggering of signal emission from irradiated cells and response of nonirradiated recipient cells; in principle it can incorporate microdosimetric information as well as the random aspects of signal triggering and recipient response. Late effects are modeled using a one-stage model based on the concepts of inactivation and initiation, which allows for the proliferation of normal and initiated cells; proliferation of initiated cells is analyzed using a stochastic, birth-death approach. The model emphasizes the dependence of bystander effects on dose, which is important for the assessment of low-dose cancer induction by extrapolations of risk from high-dose exposures. The results obtained show adequate agreement with different in vitro bystander experiments involving ultrasoft X rays and alpha particles and correctly reflect the main features observed for several end points. Our results suggest signal transmission through the medium rather than gap junctions. We suggest that for many such experiments, a moderate increase in medium volume should have about the same effect as a moderate decrease in the fraction of irradiated cells.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011874 Radiometry The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING. Geiger-Mueller Counters,Nuclear Track Detection,Radiation Dosimetry,Dosimetry, Radiation,Geiger Counter,Geiger-Mueller Counter Tube,Geiger-Mueller Probe,Geiger-Mueller Tube,Radiation Counter,Counter Tube, Geiger-Mueller,Counter Tubes, Geiger-Mueller,Counter, Geiger,Counter, Radiation,Counters, Geiger,Counters, Geiger-Mueller,Counters, Radiation,Detection, Nuclear Track,Dosimetries, Radiation,Geiger Counters,Geiger Mueller Counter Tube,Geiger Mueller Counters,Geiger Mueller Probe,Geiger Mueller Tube,Geiger-Mueller Counter Tubes,Geiger-Mueller Probes,Geiger-Mueller Tubes,Probe, Geiger-Mueller,Probes, Geiger-Mueller,Radiation Counters,Radiation Dosimetries,Tube, Geiger-Mueller,Tube, Geiger-Mueller Counter,Tubes, Geiger-Mueller,Tubes, Geiger-Mueller Counter
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D000512 Alpha Particles Positively charged particles composed of two protons and two NEUTRONS, i.e. equivalent to HELIUM nuclei, which are emitted during disintegration of heavy ISOTOPES. Alpha rays have very strong ionizing power, but weak penetrability. Alpha Rays,Alpha Radiation,Radiation, Alpha,Alpha Particle,Alpha Ray,Particle, Alpha,Particles, Alpha,Ray, Alpha,Rays, Alpha
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
December 2015, BMC systems biology,
Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
August 2017, Journal of mathematical biology,
Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
January 2006, Acta oncologica (Stockholm, Sweden),
Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
July 2011, Radiation protection dosimetry,
Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
August 2008, The Journal of pharmacy and pharmacology,
Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
February 2004, Nature reviews. Cancer,
Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
May 2015, Radiation research,
Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
August 2006, International journal of radiation biology,
Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
February 2004, Human & experimental toxicology,
Hatim Fakir, and Werner Hofmann, and Wai Y Tan, and Rainer K Sachs
February 2004, Human & experimental toxicology,
Copied contents to your clipboard!