NMP-modified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation. 2009

Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
R&D Biomaterials, Synthes GmbH, 4436 Oberdorf, Switzerland. boger.andreas@synthes.com

The use of polymethylmethacrylate (PMMA) to reinforce vertebral bodies (Vertebroplasty) leads to an increase in the Young's modulus of the augmented vertebral body. Fractures in the adjacent vertebrae may be the consequence thereof. Hence, PMMA with a reduced Young's modulus may be suitable for vertebroplasty. The goal of this study was to produce and characterize stiffness-adapted PMMA cements. Modified PMMA bone cements were produced by adding N-methyl-pyrrolidone (NMP). Young's modulus, yield strength, polymerization temperature, setting time, and hardening behavior of different cements were analyzed. Focus was on the mechanical properties of the material after different storage conditions (in air at room temperature and in PBS at 37 degrees C). The Young's modulus decreased from 2670 MPa (air)/2384 MPa (PBS) for the regular cement to 76 MPa (air)/320 MPa (PBS) for a material composition with 60% of the MMA substituted by NMP. Yield strength decreased from 85 MPa (air)/78 MPa (PBS) to 2 MPa (air)/24 MPa (PBS) between the regular cement and the 60% composition. Polymerization temperature decreased from 70 degrees C (regular cement) to 48 degrees C for the 30% composition. The hardening behavior exhibited an extension in handling time up to 200% by the modification presented. Modification of PMMA cement using NMP seems to be a promising method to make the PMMA cement more compliant for the use in cancellous bone augmentation in osteoporotic patients: adjustment of its mechanical properties close to those of cancellous bone, lower polymerization temperature, and extended handling time.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D010024 Osteoporosis Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis. Age-Related Osteoporosis,Bone Loss, Age-Related,Osteoporosis, Age-Related,Osteoporosis, Post-Traumatic,Osteoporosis, Senile,Senile Osteoporosis,Osteoporosis, Involutional,Age Related Osteoporosis,Age-Related Bone Loss,Age-Related Bone Losses,Age-Related Osteoporoses,Bone Loss, Age Related,Bone Losses, Age-Related,Osteoporoses,Osteoporoses, Age-Related,Osteoporoses, Senile,Osteoporosis, Age Related,Osteoporosis, Post Traumatic,Post-Traumatic Osteoporoses,Post-Traumatic Osteoporosis,Senile Osteoporoses
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011760 Pyrrolidinones A group of compounds that are derivatives of oxo-pyrrolidines. A member of this group is 2-oxo pyrrolidine, which is an intermediate in the manufacture of polyvinylpyrrolidone. (From Merck Index, 11th ed) Pyrrolidinone,Pyrrolidone,Pyrrolidones
D001843 Bone Cements Adhesives used to fix prosthetic devices to bones and to cement bone to bone in difficult fractures. Synthetic resins are commonly used as cements. A mixture of monocalcium phosphate, monohydrate, alpha-tricalcium phosphate, and calcium carbonate with a sodium phosphate solution is also a useful bone paste. Bone Cement,Bone Glues,Bone Pastes,Bone Glue,Bone Paste,Cement, Bone,Cements, Bone,Glue, Bone,Glues, Bone,Paste, Bone,Pastes, Bone
D004548 Elasticity Resistance and recovery from distortion of shape.
D006244 Hardness The mechanical property of material that determines its resistance to force. HARDNESS TESTS measure this property. Hardnesses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible

Related Publications

Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
November 2011, Journal of the mechanical behavior of biomedical materials,
Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
July 2022, Biomedicines,
Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
September 2015, Der Unfallchirurg,
Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
January 2008, Journal of biomaterials science. Polymer edition,
Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
December 2006, Journal of materials science. Materials in medicine,
Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
February 2011, Journal of biomaterials applications,
Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
February 2003, Biomaterials,
Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
March 2008, Journal of materials science. Materials in medicine,
Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
January 2011, Bio-medical materials and engineering,
Andreas Boger, and Kurtis Wheeler, and Andrea Montali, and Elliot Gruskin
April 2003, Computer methods in biomechanics and biomedical engineering,
Copied contents to your clipboard!