Apical maxi K channels in intercalated cells of CCT. 1991

J Pácha, and G Frindt, and H Sackin, and L G Palmer
Department of Physiology, Cornell University Medical College, New York, New York 10021.

High-conductance (maxi) K channels in the apical membrane of rat and rabbit cortical collecting tubules (CCT) were studied using the patch-clamp technique. Principal cells (PC) and intercalated cells (IC) were distinguished with Hoffman modulation optics in split-open tubules. IC were further identified by staining tubules with the fluorescent mitochondrial dye, rhodamine 123. Maxi-K channels were distinguished by their high conductance (greater than 80 pS) and voltage-dependent kinetics. In CCT of rats on a low-Na diet, maxi K channels were observed in 11% of the cell-attached patches on PC and 79% of patches on IC. In rats on a normal diet, the channels were seen in 23 and 79% of patches on PC and IC, respectively. In the rabbit CCT, maxi K channels were observed in 12% (4 of 32) of the patches on PC and 82% (122 of 148) of the patches on IC. The greater abundance of channels in IC was confirmed in rat CCT using the whole-cell clamp technique. Current through the maxi K channels (IK) was measured as the tetraethylammonium (TEA)-sensitive (2.5 mM) outward current in cells equilibrated with 115 mM K and 10(-5) M Ca2+ in the pipette solution. When the cell was clamped to an internal potential of +40 mV, the average IK per cell was -4 +/- 5 pA in PC and 290 +/- 90 pA in IC. Lowering cytoplasmic Ca2+ from 10(-5) M to 10(-7) M reduced IK to 32 +/- 21 pA. Neither single Na channels nor amiloride-sensitive whole-cell currents were seen in IC. Finally, maxi K channels could be activated by pipette suction (10-40 cm H2O) in either cell-attached or inside-out patches on IC from rabbit CCT. This mechanosensitivity was observed even after chelation of free Ca2+ with ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) in the pipette or the bath solutions, implying that stretch activation of these channels was not mediated by increased Ca2+ entry into the cell. The IC maxi K channel may play a role in cell volume regulation or in K secretion during elevation of luminal hydrostatic pressure.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010812 Physical Stimulation Act of eliciting a response from a person or organism through physical contact. Stimulation, Physical,Physical Stimulations,Stimulations, Physical
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Pácha, and G Frindt, and H Sackin, and L G Palmer
January 1994, The Journal of membrane biology,
J Pácha, and G Frindt, and H Sackin, and L G Palmer
November 1990, Pflugers Archiv : European journal of physiology,
J Pácha, and G Frindt, and H Sackin, and L G Palmer
February 1999, The American journal of physiology,
J Pácha, and G Frindt, and H Sackin, and L G Palmer
October 2005, American journal of physiology. Renal physiology,
J Pácha, and G Frindt, and H Sackin, and L G Palmer
June 1992, The American journal of physiology,
J Pácha, and G Frindt, and H Sackin, and L G Palmer
March 2008, American journal of physiology. Cell physiology,
J Pácha, and G Frindt, and H Sackin, and L G Palmer
April 1995, The American journal of physiology,
J Pácha, and G Frindt, and H Sackin, and L G Palmer
March 1987, The American journal of physiology,
J Pácha, and G Frindt, and H Sackin, and L G Palmer
July 1998, The Journal of membrane biology,
J Pácha, and G Frindt, and H Sackin, and L G Palmer
July 1994, The Journal of membrane biology,
Copied contents to your clipboard!