XsFRP5 modulates endodermal organogenesis in Xenopus laevis. 2009

Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
Department of Developmental Biochemistry, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37073 Göttingen, Germany.

Canonical Wnt signalling is known to be involved in the regulation of differentiation and proliferation in the context of endodermal organogenesis. Wnt mediated beta-catenin activation is understood to be modulated by secreted Frizzled-related proteins, such as XsFRP5, which is dynamically expressed in the prospective liver/ventral pancreatic precursor cells during late neurula stages, becoming liver specific at tailbud stages and shifting to the posterior stomach/anterior duodenum territory during tadpole stages of Xenopus embryogenesis. These expression characteristics prompted us to analyse the function of XsFRP5 in the context of endodermal organogenesis. We demonstrate that XsFRP5 can form a complex with and inhibit a multitude of different Wnt ligands, including both canonical and non-canonical ones. Knockdown of XsFRP5 results in transient pancreatic hypoplasia as well as in an enlargement of the stomach. In VegT-injected animal cap explants, XsFRP5 can induce expression of exocrine but not endocrine pancreatic marker genes. Both, its expression characteristics as well as its interactions with XsFRP5, define Wnt2b as a putative target for XsFRP5 in vivo. Knockdown of Wnt2b results in a hypoplastic stomach as well as in hypoplasia of the pancreas. On the basis of these findings we propose that XsFRP5 exerts an early regulatory function in the specification of the ventral pancreas, as well as a late function in controlling stomach size via inhibition of Wnt signalling.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D047468 Immunoprecipitation The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution. Co-Immunoprecipitation,Immune Precipitation,Co Immunoprecipitation,Co-Immunoprecipitations,Immune Precipitations,Precipitation, Immune,Precipitations, Immune
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular
D051153 Wnt Proteins Wnt proteins are a large family of secreted glycoproteins that play essential roles in EMBRYONIC AND FETAL DEVELOPMENT, and tissue maintenance. They bind to FRIZZLED RECEPTORS and act as PARACRINE PROTEIN FACTORS to initiate a variety of SIGNAL TRANSDUCTION PATHWAYS. The canonical Wnt signaling pathway stabilizes the transcriptional coactivator BETA CATENIN. Wingless Type Protein,Wnt Factor,Wnt Protein,Wingless Type Proteins,Wnt Factors,Factor, Wnt,Protein, Wingless Type,Protein, Wnt,Type Protein, Wingless

Related Publications

Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
March 1996, Development (Cambridge, England),
Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
November 1988, Cell and tissue research,
Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
May 1977, Anatomy and embryology,
Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
August 2009, Transgenic research,
Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
February 2008, Environmental health perspectives,
Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
January 2008, The International journal of developmental biology,
Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
April 2000, Development, growth & differentiation,
Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
January 2011, Gene expression patterns : GEP,
Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
December 1966, Acta embryologiae et morphologiae experimentalis,
Katharina Damianitsch, and Juliane Melchert, and Tomas Pieler
July 1949, Nordisk medicin,
Copied contents to your clipboard!