Toward an atomic model of the 26S proteasome. 2009

Yifan Cheng
The W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California-San Francisco, 600 16th Street, San Francisco, CA 94158, USA. ycheng@ucsf.edu

Since the discovery of the 26S proteasome, much progress has been made in determining the structure of this large dynamic protein complex. Until now, a vast amount of structural information of the proteasome has been obtained from all kinds of structure determination techniques, and the function of the protease core is well understood at atomic detail. Yet our understanding of the entire 26S proteasome structure, particularly its 19S regulatory complex, is still limited at a low-resolution blob-ology level. In this review, we highlight the recent progress made in understanding the mechanism of 20S gate opening by the proteasomal activators. We also emphasized the recent methodological advances, particularly in achieving the near atomic resolution by single particle electron cryomicroscopy, and the possible approaches that will enable more detailed structural analysis of the entire 26S proteasome.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D046988 Proteasome Endopeptidase Complex A large multisubunit complex that plays an important role in the degradation of most of the cytosolic and nuclear proteins in eukaryotic cells. It contains a 700-kDa catalytic sub-complex and two 700-kDa regulatory sub-complexes. The complex digests ubiquitinated proteins and protein activated via ornithine decarboxylase antizyme. 20S Proteasome,Ingensin,Macropain,Macroxyproteinase,Multicatalytic Endopeptidase Complex,Multicatalytic Proteinase,Prosome,Proteasome,Complex, Multicatalytic Endopeptidase,Complex, Proteasome Endopeptidase,Endopeptidase Complex, Multicatalytic,Endopeptidase Complex, Proteasome,Proteasome, 20S,Proteinase, Multicatalytic
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies
D021122 Protein Subunits Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly. Protomers,Protein Subunit,Protomer,Subunit, Protein,Subunits, Protein

Related Publications

Yifan Cheng
August 2010, Molecular & cellular proteomics : MCP,
Yifan Cheng
September 2016, Nature structural & molecular biology,
Yifan Cheng
September 2012, Proceedings of the National Academy of Sciences of the United States of America,
Yifan Cheng
October 2009, Biochemical and biophysical research communications,
Yifan Cheng
April 2012, Molecular cell,
Yifan Cheng
January 2002, Progress in molecular and subcellular biology,
Yifan Cheng
January 2002, Current topics in microbiology and immunology,
Yifan Cheng
May 2017, Cell,
Yifan Cheng
December 2018, Nature structural & molecular biology,
Copied contents to your clipboard!