Essential role for macrophage migration inhibitory factor in gastritis induced by Helicobacter pylori. 2009

Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.

Macrophage migration inhibitory factor (MIF) is an upstream regulator of immune and inflammatory responses; however, its role in Helicobacter pylori (HP)-associated gastritis remains unknown. We infected MIF knockout (KO) and wild-type mice with SS1 HP and found that 2 weeks after infection, MIF and its receptor CD74 were markedly up-regulated in wild-type mice. This up-regulation preceded the up-regulation of both tumor necrosis factor-alpha and intercellular adhesion molecule-1, as well as the development of moderate gastritis at 8 weeks, as determined by a significant infiltration of neutrophils, T cells, and macrophages. In contrast, KO mice were protected against HP-induced gastritis by preventing the up-regulation of CD74 and Th1-mediated immune injury, including a reduction in the Th1 transcriptional factor T-bet and the expression of interferon-gamma. Additionally, inhibition of skin delayed type hypersensitivity reactions to HP antigens in KO mice also suggested a critical role for MIF in cell-mediated injury. A regulatory role for MIF in Th1-immune responses was further demonstrated by the finding that antigen-primed CD4(+) T cells lacking MIF failed to differentiate into the Th1 phenotype; these cells were instead promoted to Th2 differentiation after challenge with HP antigen in vitro. Results from this study indicated that inhibition of HP-induced innate immune responses and Th1-mediated immune injury may be the key mechanisms by which KO mice failed to develop gastritis after HP infection.

UI MeSH Term Description Entries
D006968 Hypersensitivity, Delayed An increased reactivity to specific antigens mediated not by antibodies but by sensitized T CELLS. Hypersensitivity, Tuberculin-Type,Hypersensitivity, Type IV,Tuberculin-Type Hypersensitivity,Type IV Hypersensitivity,Delayed Hypersensitivity,Delayed Hypersensitivities,Hypersensitivity, Tuberculin Type,Tuberculin Type Hypersensitivity,Tuberculin-Type Hypersensitivities,Type IV Hypersensitivities
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008263 Macrophage Migration-Inhibitory Factors Proteins released by sensitized LYMPHOCYTES and possibly other cells that inhibit the migration of MACROPHAGES away from the release site. The structure and chemical properties may vary with the species and type of releasing cell. Macrophage Migration Inhibitory Factor,Migration Inhibition Factors, Macrophage,Macrophage Migration Inhibition Factors,Migration Inhibition Factor, Macrophage,Macrophage Migration Inhibitory Factors,Migration-Inhibitory Factors, Macrophage
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005756 Gastritis Inflammation of the GASTRIC MUCOSA, a lesion observed in a number of unrelated disorders. Gastritides
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D000944 Antigens, Differentiation, B-Lymphocyte Membrane antigens associated with maturation stages of B-lymphocytes, often expressed in tumors of B-cell origin. Antigens, Differentiation, B-Cell,B-Cell Differentiation Antigens,B-Lymphocyte Differentiation Antigens,Blast-2 Antigen, B-Cell,Differentiation Antigens, B-Cell,Differentiation Antigens, B-Lymphocyte,Leu Antigens, B-Lymphocyte,Plasma Cell Antigens PC-1,Antigens, Differentiation, B Lymphocyte,Antigens, Plasma Cell, PC-1,B-Cell Blast-2 Antigen,Antigen, B-Cell Blast-2,Antigens, B-Cell Differentiation,Antigens, B-Lymphocyte Differentiation,Antigens, B-Lymphocyte Leu,B Cell Blast 2 Antigen,B Cell Differentiation Antigens,B Lymphocyte Differentiation Antigens,B-Lymphocyte Leu Antigens,Blast 2 Antigen, B Cell,Differentiation Antigens, B Cell,Differentiation Antigens, B Lymphocyte,Leu Antigens, B Lymphocyte,Plasma Cell Antigens PC 1
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II

Related Publications

Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
January 2007, Internal medicine (Tokyo, Japan),
Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
April 2005, World journal of gastroenterology,
Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
July 1991, Infection and immunity,
Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
January 2019, PloS one,
Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
July 1996, Proceedings of the National Academy of Sciences of the United States of America,
Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
August 2006, Helicobacter,
Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
October 2005, Proceedings of the National Academy of Sciences of the United States of America,
Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
April 2011, The Journal of investigative dermatology,
Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
October 2015, Genetics and molecular research : GMR,
Benny L W Wong, and Sen-Lin Zhu, and Xiao R Huang, and Juan Ma, and Harry H X Xia, and Richard Bucala, and Benjamin C Y Wong, and Hui Yao Lan
January 1991, Reviews of infectious diseases,
Copied contents to your clipboard!