Cutaneous facilitation of transmission in reflex pathways from Ib afferents to motoneurones. 1977

A Lundberg, and K Malmgren, and E D Schomburg

1. The effect of volleys in low threshold cutaneous afferents upon transmission of synaptic action from Ib afferents to motoneurones has been investigated with intracellular recording from alpha motoneurones to hind limb muscles. 2. There was facilitation from cutaneous afferents of transmission in excitatory and inhibitory reflex pathways from Ib afferents without any evidence for difference in effect on di- and trisynaptic pathways. It is postulated that volleys in cutaneous afferents evoke excitatory action in interneurones of these reflex pathways. 3. The time course of the facilitation suggest that cutaneous afferents have disynaptic excitatory connexions with the interneurones intercalated in the disynaptic Ib inhibitory pathways to motoneurones. 4. Some observations are reported suggesting that interneuronal transmission in Ib inhibitory pathways to motoneurones might be facilitated from Ia afferents. 5. The findings are discussed in relation to the presumed role of Ib reflex action in regulating muscle tension.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009129 Muscle Tonus The state of activity or tension of a muscle beyond that related to its physical properties, that is, its active resistance to stretch. In skeletal muscle, tonus is dependent upon efferent innervation. (Stedman, 25th ed) Muscle Tension,Muscle Tightness,Muscular Tension,Tension, Muscle,Tension, Muscular,Tightness, Muscle,Tonus, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

A Lundberg, and K Malmgren, and E D Schomburg
January 1981, Experimental brain research,
A Lundberg, and K Malmgren, and E D Schomburg
December 1981, Neuroscience letters,
A Lundberg, and K Malmgren, and E D Schomburg
January 1985, Experimental brain research,
A Lundberg, and K Malmgren, and E D Schomburg
November 1995, Brain research,
A Lundberg, and K Malmgren, and E D Schomburg
June 1975, Acta physiologica Scandinavica,
A Lundberg, and K Malmgren, and E D Schomburg
September 1972, Acta physiologica Scandinavica,
A Lundberg, and K Malmgren, and E D Schomburg
January 1964, Progress in brain research,
Copied contents to your clipboard!