Laboratory systems integration: robotics and automation. 1991

R A Felder
University of Virginia Health Sciences Center, Department of Pathology, Charlottesville 22908.

Robotic technology is going to have a profound impact on the clinical laboratory of the future. Faced with increased pressure to reduce health care spending yet increase services to patients, many laboratories are looking for alternatives to the inflexible or "fixed" automation found in many clinical analyzers. Robots are being examined by many clinical pathologists as an attractive technology which can adapt to the constant changes in laboratory testing. Already, laboratory designs are being altered to accommodate robotics and automated specimen processors. However, the use of robotics and computer intelligence in the clinical laboratory is still in its infancy. Successful examples of robotic automation exist in several laboratories. Investigators have used robots to automate endocrine testing, high performance liquid chromatography, and specimen transportation. Large commercial laboratories are investigating the use of specimen processors which combine the use of fixed automation and robotics. Robotics have also reduced the exposure of medical technologists to specimens infected with viral pathogens. The successful examples of clinical robotics applications were a result of the cooperation of clinical chemists, engineers, and medical technologists. At the University of Virginia we have designed and implemented a robotic critical care laboratory. Initial clinical experience suggests that robotic performance is reliable, however, staff acceptance and utilization requires continuing education. We are also developing a robotic cyclosporine which promises to greatly reduce the labor costs of this analysis. The future will bring lab wide automation that will fully integrate computer artificial intelligence and robotics. Specimens will be transported by mobile robots. Specimen processing, aliquotting, and scheduling will be automated.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D002984 Clinical Laboratory Information Systems Information systems, usually computer-assisted, designed to store, manipulate, and retrieve information for planning, organizing, directing, and controlling administrative and clinical activities associated with the provision and utilization of clinical laboratory services. Laboratory Information Systems,Information Systems, Clinical Laboratory,Information System, Laboratory,Information Systems, Laboratory,Laboratory Information System,System, Laboratory Information,Systems, Laboratory Information
D001185 Artificial Intelligence Theory and development of COMPUTER SYSTEMS which perform tasks that normally require human intelligence. Such tasks may include speech recognition, LEARNING; VISUAL PERCEPTION; MATHEMATICAL COMPUTING; reasoning, PROBLEM SOLVING, DECISION-MAKING, and translation of language. AI (Artificial Intelligence),Computer Reasoning,Computer Vision Systems,Knowledge Acquisition (Computer),Knowledge Representation (Computer),Machine Intelligence,Computational Intelligence,Acquisition, Knowledge (Computer),Computer Vision System,Intelligence, Artificial,Intelligence, Computational,Intelligence, Machine,Knowledge Representations (Computer),Reasoning, Computer,Representation, Knowledge (Computer),System, Computer Vision,Systems, Computer Vision,Vision System, Computer,Vision Systems, Computer
D001331 Automation Controlled operation of an apparatus, process, or system by mechanical or electronic devices that take the place of human organs of observation, effort, and decision. (From Webster's Collegiate Dictionary, 1993) Automations
D012371 Robotics The application of electronic, computerized control systems to mechanical devices designed to perform human functions. Formerly restricted to industry, but nowadays applied to artificial organs controlled by bionic (bioelectronic) devices, like automated insulin pumps and other prostheses. Companion Robots,Humanoid Robots,Remote Operations (Robotics),Social Robots,Socially Assistive Robots,Telerobotics,Soft Robotics,Assistive Robot, Socially,Companion Robot,Humanoid Robot,Operation, Remote (Robotics),Operations, Remote (Robotics),Remote Operation (Robotics),Robot, Companion,Robot, Humanoid,Robot, Social,Robot, Socially Assistive,Robotic, Soft,Social Robot,Socially Assistive Robot,Soft Robotic

Related Publications

R A Felder
February 1993, Current opinion in biotechnology,
R A Felder
January 1991, The Journal of automatic chemistry,
R A Felder
January 1990, The Journal of automatic chemistry,
R A Felder
January 1992, The Journal of automatic chemistry,
R A Felder
January 1994, The Journal of automatic chemistry,
R A Felder
July 1993, Bio/technology (Nature Publishing Company),
R A Felder
February 1988, IEEE transactions on bio-medical engineering,
R A Felder
March 2014, Journal of biomolecular screening,
Copied contents to your clipboard!