Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. 2009

Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
Microbiology Programme, Department of Cell and Molecular Biology, Box 596, Biomedical Center, Uppsala University, S-75124 Uppsala, Sweden.

Resistance to fusidic acid in Staphylococcus aureus is caused by mutation of the elongation factor G (EF-G) drug target (FusA class) or by expression of a protein that protects the drug target (FusB and FusC classes). Recently, two novel genetic classes of small-colony variants (SCVs) were identified among fusidic acid-resistant mutants selected in vitro (FusA-SCV and FusE classes). We analyzed a phylogenetically diverse collection of fusidic acid-resistant bacteremia isolates to determine which resistance classes were prevalent and whether these were associated with particular phylogenetic lineages. Each isolate was shown by DNA sequencing and plasmid curing to carry only one determinant of fusidic acid resistance, with approximately equal frequencies of the FusA, FusB, and FusC genetic classes. The FusA class (mutations in fusA) were distributed among different phylogenetic types. Two distinct variants of the FusC class (chromosomal fusC gene) were identified, and FusC was also distributed among different phylogenetic types. In contrast, the FusB class (carrying fusB on a plasmid) was found in closely related types. No FusE-class mutants (carrying mutations in rplF) were found. However, one FusA-class isolate had multiple mutations in the fusA gene, including one altering a codon associated with the FusA-SCV class. SCVs are frequently unstable and may undergo compensatory evolution to a normal growth phenotype after their initial occurrence. Accordingly, this normal-growth isolate might have evolved from a fusidic acid-resistant SCV. We conclude that at least three different resistance classes are prevalent among fusidic acid-resistant bacteremia isolates of S. aureus.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D005672 Fusidic Acid An antibiotic isolated from the fermentation broth of Fusidium coccineum. (From Merck Index, 11th ed). It acts by inhibiting translocation during protein synthesis. Fucithalmic,Fusidate Sodium,Fusidic Acid, Sodium Salt,Fusidin,Silver Fusidate,Sodium Fusidate,Stanicide,Acid, Fusidic,Fusidate, Silver,Fusidate, Sodium,Sodium, Fusidate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013203 Staphylococcal Infections Infections with bacteria of the genus STAPHYLOCOCCUS. Infections, Staphylococcal,Staphylococcus aureus Infection,Staphylococcal Infection,Staphylococcus aureus Infections
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016470 Bacteremia The presence of viable bacteria circulating in the blood. Fever, chills, tachycardia, and tachypnea are common acute manifestations of bacteremia. The majority of cases are seen in already hospitalized patients, most of whom have underlying diseases or procedures which render their bloodstreams susceptible to invasion. Bacteremias

Related Publications

Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
December 2010, Antimicrobial agents and chemotherapy,
Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
October 2015, BMC microbiology,
Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
March 2002, Lancet (London, England),
Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
January 2021, Frontiers in medicine,
Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
August 2017, Oncotarget,
Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
May 2011, BMC microbiology,
Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
March 2004, International journal of dermatology,
Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
April 2003, The Journal of antimicrobial chemotherapy,
Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
February 1990, The Journal of antimicrobial chemotherapy,
Jonas Lannergård, and Tobias Norström, and Diarmaid Hughes
March 2011, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!