Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex. 2009

Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
Section on Neural Development and Plasticity, National Institute of Child Health and Human Development, National Institutes of Health, 35 Lincoln Drive, Bethesda, MD 20892-3714, USA.

Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant deficits in GABAergic interneurons in the prefrontal cortex (PFC), particularly those expressing parvalbumin, a subtype implicated in executive function and schizophrenia. Moreover, disruption of promoter IV-driven Bdnf transcription impaired inhibitory but not excitatory synaptic transmission recorded from layer V pyramidal neurons in the PFC. The attenuation of GABAergic inputs resulted in an aberrant appearance of spike-timing-dependent synaptic potentiation (STDP) in PFC slices derived from BDNF-KIV, but not wild-type littermates. These results demonstrate the importance of promoter IV-dependent Bdnf transcription in GABAergic function and reveal an unexpected regulation of STDP in the PFC by BDNF.

UI MeSH Term Description Entries
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D053444 Inhibitory Postsynaptic Potentials Hyperpolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during NEUROTRANSMISSION. They are local changes which diminish responsiveness to excitatory signals. IPSP,Inhibitory Postsynaptic Currents,Current, Inhibitory Postsynaptic,Currents, Inhibitory Postsynaptic,IPSPs,Inhibitory Postsynaptic Current,Inhibitory Postsynaptic Potential,Postsynaptic Current, Inhibitory,Postsynaptic Currents, Inhibitory,Postsynaptic Potential, Inhibitory,Postsynaptic Potentials, Inhibitory,Potential, Inhibitory Postsynaptic,Potentials, Inhibitory Postsynaptic
D055366 Synaptic Potentials The voltages across pre- or post-SYNAPTIC MEMBRANES. Postsynaptic Current,Postsynaptic Potentials,Synaptic Potential,Current, Postsynaptic,Currents, Postsynaptic,Postsynaptic Currents,Postsynaptic Potential,Potential, Postsynaptic,Potential, Synaptic,Potentials, Postsynaptic
D019208 Brain-Derived Neurotrophic Factor A member of the nerve growth factor family of trophic factors. In the brain BDNF has a trophic action on retinal, cholinergic, and dopaminergic neurons, and in the peripheral nervous system it acts on both motor and sensory neurons. (From Kendrew, The Encyclopedia of Molecular Biology, 1994) BDNF,Brain Derived Neurotrophic Factor,Factor, Brain-Derived Neurotrophic,Neurotrophic Factor, Brain-Derived

Related Publications

Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
February 2012, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
July 2021, Neuropharmacology,
Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
October 2010, Genes, brain, and behavior,
Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
August 2007, Science's STKE : signal transduction knowledge environment,
Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
June 2019, Science (New York, N.Y.),
Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
March 2022, Biology open,
Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
September 2022, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
September 2007, Biochemical and biophysical research communications,
Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
December 2023, Neural regeneration research,
Kazuko Sakata, and Newton H Woo, and Keri Martinowich, and Joshua S Greene, and Robert J Schloesser, and Liya Shen, and Bai Lu
January 2003, Journal of physiology, Paris,
Copied contents to your clipboard!