Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges. 2009

Valeri Lopantsev, and Martin Both, and Andreas Draguhn
Institut für Physiologie und Pathophysiologie, Universität Heidelberg, Heidelberg, Germany. vel717@hotmail.com

Epileptic seizures can induce pathological processes of plasticity in the brain that tend to promote the generation of further seizures. However, the immediate impact of epileptic seizures on cellular excitability remains poorly understood. In order to unravel such early mechanisms of epilepsy-induced plasticity, we studied synaptic transmission before and shortly after three ictal discharges induced by transient elevation of extracellular K(+) in mouse hippocampal slices. Discharges were initiated in the CA3 region and propagated via the Schaffer collaterals into CA1 where they were associated with sustained membrane depolarization and bursts of action potentials in CA1 pyramidal cells. Subsequently, discharges were followed by long-term potentiation (LTP) of Schaffer collateral-evoked field excitatory post-synaptic potentials (EPSPs) in the CA1. The ability to generate epileptiform activity in response to repetitive stimulation was enhanced during LTP. Changes in both inhibitory and excitatory synaptic transmission contributed to LTP in CA1 pyramidal cells. Discharges reduced gamma-aminobutyric acid-A receptor-mediated hyperpolarizing inhibitory post-synaptic potentials by shifting their reversal potentials in a positive direction. At the same time, the amplitudes of Schaffer collateral-evoked RS-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-mediated EPSPs and action potential-independent miniature EPSPs were enhanced. However, N-methyl-d-aspartate receptor-mediated EPSPs remained unchanged. Paired-pulse stimulation revealed a reduced probability of glutamate release. Together, these changes in synaptic transmission produce a sustained increase in hippocampal excitability. We conclude that a few seizure-like ictal episodes are sufficient to cause fast and lasting changes in the excitation/inhibition balance in hippocampal networks, and therefore may contribute to early phases of progressive epileptogenesis.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011724 Pyridazines Six-membered rings with two adjacent nitrogen atoms also called 1,2-diazine.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders

Related Publications

Valeri Lopantsev, and Martin Both, and Andreas Draguhn
January 2014, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Valeri Lopantsev, and Martin Both, and Andreas Draguhn
January 2004, The Journal of physiology,
Valeri Lopantsev, and Martin Both, and Andreas Draguhn
January 2015, Frontiers in cellular neuroscience,
Valeri Lopantsev, and Martin Both, and Andreas Draguhn
November 1996, Proceedings of the National Academy of Sciences of the United States of America,
Valeri Lopantsev, and Martin Both, and Andreas Draguhn
April 1993, Clinical EEG (electroencephalography),
Valeri Lopantsev, and Martin Both, and Andreas Draguhn
December 2022, PLoS computational biology,
Valeri Lopantsev, and Martin Both, and Andreas Draguhn
December 2018, Neuroscience bulletin,
Valeri Lopantsev, and Martin Both, and Andreas Draguhn
August 2021, Cells,
Valeri Lopantsev, and Martin Both, and Andreas Draguhn
February 2022, Cell reports,
Valeri Lopantsev, and Martin Both, and Andreas Draguhn
April 1997, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!