RNA folding during transcription by T7 RNA polymerase analyzed using the self-cleaving transcript assay. 1991

K Tyagarajan, and J A Monforte, and J E Hearst
Department of Chemistry, University of California, Berkeley.

We have used a self-cleaving RNA molecule (a "hammerhead") to study the length-dependent folding of RNA produced during transcription by T7 RNA polymerase. Transcript elongation is arrested at defined positions using chain-terminating ribonucleoside triphosphate analogues, 3'-deoxynucleoside triphosphates. When the nascent transcript attains the minimum length required for the "hammerhead" domain of the transcript to fully emerge from the ternary complex, the "hammerhead" structure forms and self-cleaves, producing a truncated product. The experiment yields an RNA sequencing ladder which terminates at the length at which cleavage becomes possible; the sequencing ladder is compared to that generated by using a noncleaving control template. We have shown that 13 nucleotides past the cleavage point must be synthesized before the transcript can self-cleave in the ternary complex whereas RNA freed from the complex by heating can cleave with only 3 or more nucleotides present beyond the cleavage site. The results indicate that the RNA in T7 RNA polymerase is not free of steric interactions in the ternary complex and not available for structure formation until it is at least 10 bases away from the site of polymerization. The results suggest that the maximum possible length of the RNA-DNA hybrid in the ternary complexes is 10. The relevance of the results in comparisons with other RNA polymerases, especially Escherichia coli RNA polymerase, is discussed.

UI MeSH Term Description Entries
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012265 Ribonucleotides Nucleotides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed) Ribonucleoside Phosphates,Ribonucleotide,Phosphates, Ribonucleoside
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage

Related Publications

K Tyagarajan, and J A Monforte, and J E Hearst
August 1990, Biochemistry,
K Tyagarajan, and J A Monforte, and J E Hearst
April 1987, Cell,
K Tyagarajan, and J A Monforte, and J E Hearst
September 2004, Molecular cell,
K Tyagarajan, and J A Monforte, and J E Hearst
August 1998, Nucleic acids research,
K Tyagarajan, and J A Monforte, and J E Hearst
April 2004, The Journal of biological chemistry,
K Tyagarajan, and J A Monforte, and J E Hearst
December 2020, RNA (New York, N.Y.),
K Tyagarajan, and J A Monforte, and J E Hearst
December 1970, Nature,
K Tyagarajan, and J A Monforte, and J E Hearst
October 1991, Biochemistry,
K Tyagarajan, and J A Monforte, and J E Hearst
June 1991, Carcinogenesis,
K Tyagarajan, and J A Monforte, and J E Hearst
October 1999, Journal of molecular biology,
Copied contents to your clipboard!